Physics, asked by pranishamhatre123, 11 months ago

find the acceleration due to gravity at a depth of 3200 km from the earth's surface assuming that erth has uniform density ​

Answers

Answered by ShivamKashyap08
12

Answer:

  • Acceleration due to gravity (g) at 3200 km is 5 m/s².

Given:

  1. Depth (d) = 3200 Km
  2. Radius of Earth (R) = 6400 Km

Explanation:

\rule{300}{1.5}

From the Formula. We know,

\bigstar \; \large{\boxed{\tt g_h = g\left[1 - \dfrac{d}{R}\right]}}

\bold{Here}\begin{cases}\text{d Denotes Depth} \\ \text{R Denotes Radius of earth}\\ \text{g Denotes acceleration due to gravity}\end{cases}

Now,

\large{\boxed{\tt g_h = g\left[1 - \dfrac{d}{R}\right]}}

Substituting the values,

\longmapsto\large{\tt  g_h = g\left[1 - \dfrac{3200}{6400}\right]}

\longmapsto\large{\tt  g_h = g\left[1 - \cancel{\dfrac{3200}{6400}}\right]}

\longmapsto\large{\tt  g_h = g\left[1 - \dfrac{1}{2}\right]}

\longmapsto\large{\tt  g_h = g\left[\dfrac{2 - 1}{2}\right]}

\longmapsto\large{\tt  g_h = g\left[\dfrac{1}{2}\right]}

∵ Acceleration Due to gravity (g) at earth is 10 m/s².

Substituting,

\longmapsto\large{\tt  g_h = 10 \times \left[\dfrac{1}{2}\right]}

\longmapsto\large{\tt  g_h = \left[\dfrac{10}{2}\right]}

\longmapsto\large{\tt  g_h = \left[\cancel{\dfrac{10}{2}}\right]}

\longmapsto\large{\underline{\boxed{\red{\tt g_h = 5 \; m/s^2}}}}

Acceleration due to gravity (g) at 3200 km is 5 m/s².

\rule{300}{1.5}

Similar questions