Math, asked by 2005anchan14, 24 days ago

find the acute angle between the lines
2x   - y + 13 \:  \: and \:  \:  \: 2x - 6y + 7

Answers

Answered by MystícPhoeníx
29

Answer:

  • Acute angle between the lines will be 45°

Step-by-step explanation:

Slope of 1st Line

→ 2x -y +13 = 0

→ y = 2x + 13

therefore, m1 = 2

Slope of 2nd line

→ 2x - 6y +7 = 0

→ y = 2/6 x + 7

→ y = 1/3 x + 7

therefore, m2 = 1/3

\bigstar\boxed{\bf{tan\theta = \bigg|\frac{m_2-m_1}{1+m_1m_2}\bigg| }}

\sf\dashrightarrow\tan\theta = \bigg|\frac{\frac{1}{3} -2 }{1+\frac{1}{3}\times2}\bigg|\\\\\sf\dashrightarrow\tan\theta = \bigg|\frac{\frac{-6+1}{3}  }{1+\frac{2}{3}}\bigg|\\\\\sf\dashrightarrow\tan\theta = \bigg|\frac{\frac{-5}{3}  }{\frac{3+2}{3}}\bigg|\\\\\sf\dashrightarrow\tan\theta = \bigg|\frac{\frac{-5}{3}  }{\frac{5}{3}}\bigg|\\\\\sf\dashrightarrow\tan\theta = \bigg|-1\bigg|\\\\\sf\dashrightarrow\tan\theta = 1 \\\\\sf\dashrightarrow\theta = 45^{\circ}

Answered by StarFighter
23

Answer:

Given :-

➳ 2x - y + 13

➳ 2x - 6y + 7

To Find :-

➳ What is the acute angle between the lines.

Formula Used :-

\clubsuit Angle between two lines Formula :

\bigstar \: \: \sf\boxed{\bold{\pink{tan\: \theta =\: \bigg| \dfrac{m_2 - m_1}{1 + m_1m_2}\bigg|}}}\: \: \: \bigstar\\

Solution :-

Given Equation :

\mapsto \sf 2x - y + 13 =\: 0

\mapsto \sf 2x - 6y + 7 =\: 0

Let,

\leadsto \bf Slope\: of\: line\: (1) =\: m_1

\leadsto \bf Slope\: of\: line\: (2) =\: m_2

\sf\bold{\underline{\purple{\clubsuit\: In\: case\: of\: slope\: (1)\: :-}}}\\

Given Equation :

\longrightarrow \bf 2x - y + 13 =\: 0

So,

\implies \sf\bold{\blue{m_1 =\: - \dfrac{a_1}{b_1}}}

\implies \sf m_1 =\: - \dfrac{2}{- 1}

\implies \sf\bold{\green{m_1 =\: 2}}

Again,

\sf\bold{\underline{\purple{\clubsuit\: In\: case\: of\: slope\: (2)\: :-}}}\\

Given Equation :

\longrightarrow \bf 2x - 6x + 7 =\: 0

So,

\implies \sf\bold{\blue{m_2 =\: - \dfrac{a_2}{b_2}}}

\implies \sf m_2 =\: - \dfrac{\cancel{2}}{- \cancel{6}}

\implies \sf m_2 =\: - \dfrac{1}{- 3}

\implies \sf\bold{\green{m_2 =\: \dfrac{1}{3}}}

Now, we have to find the acute angle between the lines :

Given :

  • m₁ = 2
  • m₂ = 1/3

According to the question by using the formula we get,

\implies \bf tan\: \theta =\: \bigg| \dfrac{m_2 - m_1}{1 + m_1m_2}\bigg|

\implies \sf tan\: \theta =\: \Bigg| \dfrac{\dfrac{1}{3} - 2}{1 + 2 \times \dfrac{1}{3}}\Bigg|\\

\implies \sf tan\: \theta =\: \Bigg| \dfrac{\dfrac{1 - 6}{3}}{1 + \dfrac{2}{3}}\Bigg|\\

\implies \sf tan\: \theta =\: \Bigg| \dfrac{\dfrac{- 5}{3}}{\dfrac{3 + 2}{3}}\Bigg|\\

\implies \sf tan\: \theta =\: \Bigg| \dfrac{\dfrac{- 5}{3}}{\dfrac{5}{3}}\Bigg|\\

\implies \sf tan\: \theta =\: \bigg| \dfrac{- 5}{3} \times \dfrac{3}{5}\bigg|\\

\implies \sf tan\: \theta =\: \bigg| \dfrac{- 15}{15}\bigg|\\

\implies \sf tan\: \theta =\: \bigg| - 1\bigg|\\

\implies \sf tan\: \theta =\: 1

\implies \sf\bold{\red{\theta =\: 45^{\circ}}}\\

\therefore The acute angle between the lines is 45° .

Similar questions