Math, asked by ramyateja9717, 1 month ago

Find the acute angle between the pair of lines 12x-4y=5and 4x+2y =7

Answers

Answered by MysticSohamS
0

Answer:

hey here is solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \: given \: lines \: are \:  \\ 12x - 4y = 5 \:  \: and \:  \: 4x + 2y = 7 \\  \\ comparing \: first \: equation \: with \\ ax + by = c \\ we \: get \\  \\ a = 12 \: , \: b =  - 4 \: ,c = 5 \\  \\ we \: know \: that \\  \\ slope =  \frac{ - a}{b}  \\  \\  =  \frac{ - 12}{ - 4}  \\  \\  =  \frac{12}{4}  \\  \\ m1 = 3

similarly  \: then\\comparing \: second \: equation   \:  \: with \:  \\ ax + by = c \\  \\ a = 4 \: , \: b = 2  \: , \: c = 7 \\  \\ so \: again \\  \\ m2 =  \frac{ - a}{b}  \\  \\  =  \frac{ - 4}{2}  \\  \\  m2=  - 2

so \: we \: know \: that \\  \\ tan \: θ =  | \:  \frac{m1 - m2}{1 + m1 \times m2} \:  |  \\  \\  =  |  \: \frac{3 - ( - 2)}{1 + 3 \times ( - 2)}  \: |  \\  \\  =  |  \: \frac{3 + 2}{1 + ( - 6)}  \: |  \\  \\  =  | \:  \frac{5}{1 - 6}  \: |  \\  \\  =  | \:  \frac{5}{( - 5)} \:  |  \\  \\  =  |  \: - 1 \: |  \\  \\ tan \:θ  = 1 \\  \\ we \: know \: that \\ tan \: 45 \:  \: ie \:   \: tan \:  \frac{\pi}{4} = 1 \\  \\ hence \: then \\  \\ θ = 45 =  (\frac{\pi}{4} ) {}^{c}

Similar questions