Math, asked by bhavyakilari, 6 months ago

Find the adjoint and the inverse of the matrix
A=1 3 3
1 4 3
1 3 4​

Answers

Answered by hotelcalifornia
10

The adjoint and inverse of the matrix

A=\left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right]   is \left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]

Step-by-step explanation:

Given:

 A=\left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right]      

To find:

Adjoint and the inverse of the matrix A.

Solution:

A=\left[\begin{array}{ccc}1&3&3\\1&4&3\\1&3&4\end{array}\right]

A^{-1} =\frac{1}{|A|} adj(A)     { |A|0 }

|A|= (16-9)-3(4-3)+3(3-4)

|A|=1     { 10 }

To find an adjoint of A,

Co-factor of 1=16-9=7

Co-factor of 3 =4-3=1=-1   ( using the adjoint property )

Co-factor of 3 =3-4=-1

Co-factor of 1  =\left[\begin{array}{ccc}3&3\\3&4\\\end{array}\right] =12-9=3=-3    ( using the adjoint property )

Co-factor of 4 =\left[\begin{array}{ccc}1&3\\1&4\end{array}\right] =4-3=1

Co-factor of 3 =\left[\begin{array}{ccc}1&3\\1&3\end{array}\right] =3-3=0

Co-factor of 1  =\left[\begin{array}{ccc}3&3\\4&3\end{array}\right] =9-12=-3

Co-factor of 3 =\left[\begin{array}{ccc}1&3\\1&3\end{array}\right] =3-3=0

Co-factor of 4 =\left[\begin{array}{ccc}1&3\\1&4\end{array}\right] =4-3=1

adj(A)=\left[\begin{array}{ccc}7&-1&-1\\-3&1&0\\-3&0&1\end{array}\right]

Now transport the matrix,

adj(A)=\left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]  

A^{-1} =\frac{1}{|A|} adj(A)

⇒  A^{-1}= \left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]

So the adjoint and the inverse of the matrix A is  

\left[\begin{array}{ccc}7&-3&-3\\-1&1&0\\-1&0&1\end{array}\right]  .

Similar questions