Math, asked by zainab2534, 1 month ago

find the adjoint and the inverse of the matrix A=1&2&\\3&-5\

Answers

Answered by kartikgaikwad250
0

A=  

 

1

2

3

 

2

3

1

 

3

1

2

 

 

∣A∣=1(6−1)−2(4−3)+3(2−6)

5−2−12

−9

Minor of A=  

 

5

1

−4

 

1

−4

−5

 

−4

−5

−1

 

 

Cof(A)=  

 

5

−1

−4

 

−1

−4

+5

 

−4

+5

−1

 

 

adj (A)=  

 

5

−1

−4

 

−1

−1

5

 

−4

5

−1

 

 

A  

−1

=  

∣A∣

adj(A)

=  

9

1

 

 

−5

1

4

 

1

4

−5

 

4

−5

1

 

 

=  

9

1

 

 

−5

−1

4

 

1

4

−5

 

4

−5

1

 

Answered by TanmayStatus
5

\huge\mathfrak \red{Question}

Find the inverse of matrix by adjoint method

\tt{A = \: \left[\begin{array}{c c c}1 & 2 & 3 \\2 & 3 & 1 \\3 & 1 & 2\end{array}\right]}

\huge\mathfrak \pink{Answer}

\tt{A = \left(\begin{array}{c c c}1 & 2 & 3 \\2 & 3& 1 \\3& 1 & 2\end{array}\right)}

 \tt{∣A∣=1(6−1)−2(4−3)+3(2−6)} \\\tt{5−2−12} \\\tt{−9}

\tt{Minor \:  of \:  A=\left(\begin{array}{c c c}5& 1&  - 4 \\1 &  - 4 &  - 5\\- 4 &  - 5& - 1\end{array}\right)}

\tt{Cof(A)= \left(\begin{array}{c c c}5&  - 1&  - 4 \\ - 1 &  - 4 &   + 5\\ - 4 &   +  5& - 1\end{array}\right)}

\tt{adj (A)=\left(\begin{array}{c c c}5&  - 1&  - 4 \\ - 1 &  - 1 & 5\\ - 4 &  5& - 1\end{array}\right)}

\tt{A^{-1} \:  =    \frac{adj(A)}{|A|}  \:  =\frac{1}{9}\left(\begin{array}{c c c} - 5&  1&  4 \\1 &  4 &  - 5\\4 &  -  5& 1\end{array}\right)}

\tt{=  \frac{1}{9} \left(\begin{array}{c c c} - 5&  1&  4 \\ 1 &  4 &  - 5\\ 4 &  -  5& 1\end{array}\right)}

I hope it's helps you ☺️.

Please markerd as brainliest answer ✌️✌️.

Similar questions