Math, asked by diliptalpada265, 12 days ago

find the adjoint of the matrix: \
\mathtt\purple{\left[ \begin{array}  { l l l  }  { 2 } & { - 1 } & { 3 } \\ { 4 } & { 2 } & { 5 } \\ { 0 } & { 4 } & { 1 } \end{array} \right]}

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given matrix is

\rm :\longmapsto\:{\left[ \begin{array} { l l l } { 2 } & { - 1 } & { 3 } \\ { 4 } & { 2 } & { 5 } \\ { 0 } & { 4 } & { 1 } \end{array} \right]}

Let assume that

\rm :\longmapsto\:A = {\left[ \begin{array} { l l l } { 2 } & { - 1 } & { 3 } \\ { 4 } & { 2 } & { 5 } \\ { 0 } & { 4 } & { 1 } \end{array} \right]}

Let evaluate the cofactors of matrix A

\red{\rm :\longmapsto\:A_{11} =  {( - 1)}^{1 + 1}\begin{array}{|cc|}\sf 2 &\sf 5  \\ \sf 4 &\sf 1 \\\end{array} = 2 - 20 =  - 18}

\red{\rm :\longmapsto\:A_{12} =  {( - 1)}^{1 + 2}\begin{array}{|cc|}\sf 4 &\sf 5  \\ \sf 0 &\sf 1 \\\end{array} =  - (4 - 0) =  - 4}

\red{\rm :\longmapsto\:A_{13} =  {( - 1)}^{1 + 3}\begin{array}{|cc|}\sf 4 &\sf 2  \\ \sf 0 &\sf 4 \\\end{array} = 16 - 0 =  16}

\green{\rm :\longmapsto\:A_{21} =  {( - 1)}^{2 + 1}\begin{array}{|cc|}\sf  - 1 &\sf 3  \\ \sf 4 &\sf 1 \\\end{array} = - ( - 1 - 12) = 13 }

\green{\rm :\longmapsto\:A_{22} =  {( - 1)}^{2 + 2}\begin{array}{|cc|}\sf 2 &\sf 3  \\ \sf 0 &\sf 1 \\\end{array} = 2 - 0 = 2}

\green{\rm :\longmapsto\:A_{23} =  {( - 1)}^{2 + 3}\begin{array}{|cc|}\sf 2 &\sf  - 1  \\ \sf 0 &\sf 4 \\\end{array} =  - (8 - 0) =  - 8}

\blue{\rm :\longmapsto\:A_{31} =  {( - 1)}^{3 + 1}\begin{array}{|cc|}\sf  - 1 &\sf 3 \\ \sf 2 &\sf 5 \\\end{array} = - 5 - 6 =  - 11 }

\blue{\rm :\longmapsto\:A_{32} =  {( - 1)}^{3 + 2}\begin{array}{|cc|}\sf  2 &\sf 3 \\ \sf 4 &\sf 5 \\\end{array} = - (10 - 12) = 2}

\blue{\rm :\longmapsto\:A_{33} =  {( - 1)}^{3 + 3}\begin{array}{|cc|}\sf  2 &\sf  - 1 \\ \sf 4 &\sf 2 \\\end{array} = 4 + 4 = 8}

So,

\bf\implies \:adjA = {\left[ \begin{array} { l l l } {  - 18 } & { 13 } & {  - 11 } \\ {  - 4 } & { 2 } & { 2 } \\ { 16 } & {  - 8 } & { 8 } \end{array} \right]}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Let us consider a matrix A of order n such that

\red{\rm :\longmapsto\:\boxed{\tt{  |adjA| =  { |A| }^{n - 1}}}}

\red{\rm :\longmapsto\:\boxed{\tt{  |AadjA| =  { |A| }^{n}}}}

\red{\rm :\longmapsto\:\boxed{\tt{  |kA| =  {k}^{n} |A| \: }}}

\red{\rm :\longmapsto\:\boxed{\tt{  |AB|  \:  =  \:  |A|  \:  |B|  \: }}}

Answered by anushkasengupta786
4

Answer:

Write shortcut key to save and open an existing database in .accdb. Refer to the above attachment too dear

Attachments:
Similar questions