Find the algebra of the sum
ń term
of the sequence 6, 10, 14?
Answers
Answer:
a1 =a1+(n-1)*d =6+(1-1)*4 =6
a2 =a1+(n-1)*d =6+(2-1)*4 =10
a3 =a1+(n-1)*d =6+(3-1)*4 =14
a4 =a1+(n-1)*d =6+(4-1)*4 =18
a5 =a1+(n-1)*d =6+(5-1)*4 =22
a6 =a1+(n-1)*d =6+(6-1)*4 =26
a7 =a1+(n-1)*d =6+(7-1)*4 =30
a8 =a1+(n-1)*d =6+(8-1)*4 =34
a9 =a1+(n-1)*d =6+(9-1)*4 =38
a10 =a1+(n-1)*d =6+(10-1)*4 =42
a11 =a1+(n-1)*d =6+(11-1)*4 =46
a12 =a1+(n-1)*d =6+(12-1)*4 =50
a13 =a1+(n-1)*d =6+(13-1)*4 =54
a14 =a1+(n-1)*d =6+(14-1)*4 =58
a15 =a1+(n-1)*d =6+(15-1)*4 =62
a16 =a1+(n-1)*d =6+(16-1)*4 =66
a17 =a1+(n-1)*d =6+(17-1)*4 =70
a18 =a1+(n-1)*d =6+(18-1)*4 =74
a19 =a1+(n-1)*d =6+(19-1)*4 =78
a20 =a1+(n-1)*d =6+(20-1)*4 =82
a21 =a1+(n-1)*d =6+(21-1)*4 =86
a22 =a1+(n-1)*d =6+(22-1)*4 =90
a23 =a1+(n-1)*d =6+(23-1)*4 =94
a24 =a1+(n-1)*d =6+(24-1)*4 =98
a25 =a1+(n-1)*d =6+(25-1)*4 =102
a26 =a1+(n-1)*d =6+(26-1)*4 =106
a27 =a1+(n-1)*d =6+(27-1)*4 =110
a28 =a1+(n-1)*d =6+(28-1)*4 =114
a29 =a1+(n-1)*d =6+(29-1)*4 =118
Step-by-step explanation:
a2-a1=10-6=4
a3-a2=14-10=4
a4-a3=18-14=4
The difference between every two adjacent members of the series is constant and equal to 4