Math, asked by xyx94, 6 months ago

Find the all possible values of x for which the distance between the points A(x, -1) and B(5, 3) is 5 units.

Answers

Answered by MaIeficent
29

Step-by-step explanation:

Given:-

  • Two points A( x , -1) and B(5 , 3)

  • The distance between A( x , -1) and B(5 , 3) is 5 units.

To Find:-

  • The value of x

Concept used:-

For given two points P(x₁ , x₂) and Q(y₁ , y₂)

The distance between P and is given by:-

 \:  \:  \:  \:  \:  \sf PQ =  \sqrt{ (x_{2} -  x_{1})^{2}  +  (y_{2} -  y_{1})^{2}  }

Solution:-

Given, Two points A(x , -1) and B(5 , 3)

Comparing A(x , -1) and B(5 , 3) with P(x₁ , x₂) and Q(y₁ , y₂)

Here:-

• x₁ = x \:\:\:\:\:\:\: • x₂ = -1

• y₁ = 5 \:\:\:\:\:\:\: • y₂ = 3

Now, the distance between AB = 5 units

 \sf AB =  \sqrt{ (x_{2} -  x_{1})^{2}  +  (y_{2} -  y_{1})^{2}  }

 \sf  \implies  \sqrt{ (x- 5)^{2}  +  ( - 1 - 3)^{2}   } = 5

 \sf  \implies  \sqrt{  {x}^{2}  + 25 - 10x +  ( -4)^{2}   } = 5

 \sf  \implies  \sqrt{  {x}^{2}  + 25 - 10x +  16   } = 5

 \sf  \implies  \sqrt{  {x}^{2}  - 10x +41   } = 5

Squaring on both sides:-

 \sf  \implies  (\sqrt{  {x}^{2}  - 10x +41   } )^{2} =   {5}^{2}

 \sf  \implies   {x}^{2}  - 10x +41  = 25

 \sf  \implies  {x}^{2}  - 10x +41    -25 = 0

 \sf  \implies  {x}^{2}  - 10x  + 16 = 0

By splitting the middle term:-

 \sf  \implies  {x}^{2}  - 2x - 8x  + 16 = 0

 \sf  \implies  x(x  - 2) - 8(x  - 2)= 0

 \sf  \implies  (x  - 8) (x  - 2)= 0

 \sf  \implies  x  - 8 = 0 \:  \:  \: (or) \:  \:  \: x  - 2= 0

 \sf  \implies  x  = 8 \:  \:  \: (or) \:  \:  \: x = 2

\underline{\boxed{\sf \therefore  The\:  possible\: values\: of\: x\: are \: 8 \: and \: 2}}

Answered by ItzCuteKing
29

Step-by-step explanation:

Given :

  • Distance between A(x,-1) and B(5,3) is 5 units

To find :

  • The values of x

Solution :

Since distance between A(x,-1) and B(5,3) is 5 units,

we have

AB = 5

  : \implies \sf  \:  \: \sqrt{(x_1-x_2)^2+(y_1-y_1)^2}=5  \\   \\  \\ :\implies \sf \: \:  \:  \sqrt{(x-5)^2+(-1-3)^2}=5 \\  \\  \\ </p><p></p><p>: \implies \sf  \:  \:\sqrt{(x-5)^2+(-4)^2}=5 \\   \\ \\ </p><p></p><p>: \implies \sf  \:  \:\sqrt{(x-5)^2+16}=5 \:  \\  \\ \\   \:

 \underline \boldsymbol{Squaring  \: on  \: bothsides, }

: \implies \sf  \:  \:  \: (x-5)^2+16=25 \\  \\   \\ </p><p></p><p>: \implies \sf  \:  \:  \:  \: (x-5)^2=25-16 \\  \\  \\ </p><p></p><p>: \implies \sf  \:  \:  \:  \:  \: (x-5)^2=9 \\  \\ </p><p>

Taking square root on bothsides, we get

 :  \implies \sf \:  \:  \:  \: x=5\pm{3} \\  \\ </p><p>:  \implies \sf \:  \:  \:  \: \: x = 5 - 3 \\  \\ :  \implies \sf \:  \:  \:  \:x = 2 \\  \\ </p><p> : \implies \sf \:  \:  \:  \: \;x=5+3\;\text{(or)}\; \\  \\ </p><p></p><p> : \implies \sf \:  \:  \: \;x=8\;\text{(or)}\; \\  \\ </p><p>

  • The values of x are 8 and 2
Similar questions
Math, 6 months ago