Math, asked by gowthamin148, 5 hours ago

find the all zeros of polynomial x⁴-3x³-x²+9x-6. If 2 of its zeros are √3 and -√3​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:f(x) =  {x}^{4} -  {3x}^{3} -  {x}^{2} + 9x - 6

Given that

\rm :\longmapsto\: -  \sqrt{3}  \: and \:  \sqrt{3}  \: are \: zeroes \: of \: f(x)

\rm :\longmapsto\:(x -  \sqrt{3})  \: and \: (x +  \sqrt{3})  \: are \: factors \: of \: f(x)

\rm :\longmapsto\:(x -  \sqrt{3}) \: (x +  \sqrt{3})  \: is \: factor \: of \: f(x)

\rm :\longmapsto\:( {x}^{2}  -  3) \:  \: is \: factor \: of \: f(x)

So, By using Long Division, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\: \:  \:  \: {x}^{2} - 3x + 2 \:  \: \:}}}\\ {{\sf{ {x}^{2} - 3}}}& {\sf{\: {x}^{4} - {3x}^{3} - {x}^{2} + 9x - 6 \:}} \\{\sf{}}&\underline{\sf{\: \:  \:  { - x}^{4} +  \:  \:  \:   \:  \:  \:  \:  \:  \: 3{x}^{2}   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:   \:  \: {3x}^{3} +  {2x}^{2} + 9x  - 6 \:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:   -  {3x}^{3} \:  \:  \:  \:  \:  \:  \:  \:  \:  - 9x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\:}}\\{\sf{}}&{\sf{\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {2x}^{2}  - 6\:\:}}\\{\sf{}}&\underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { - 2x}^{2} +  6 \:\:}}\\{\sf{}}&\underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:   \: \: 0 \:  \:  \:  \:  \:  \:  \:  \: }}\end{array}\end{gathered}\end{gathered}\end{gathered}

We know that,

Dividend = Divisor × Quotient + Remainder

So,

\rm :\longmapsto\: {x}^{4} -  {3x}^{3} -  {x}^{2} + 9x - 6

\rm \:  =  \:  \: ( {x}^{2} - 3)( {x}^{2} - 3x + 2)

\rm \:  =  \:  \: ( {x}^{2} - 3)( {x}^{2} - 2x  - x+ 2)

\rm \:  =  \:  \: ( {x}^{2} - 3) \bigg(x(x - 2) - 1(x - 2) \bigg)

\rm \:  =  \:  \: ( {x}^{2} - 3) \bigg((x - 2)(x - 1) \bigg)

So, zeroes of

\rm :\longmapsto\:{x}^{4} -  {3x}^{3} -  {x}^{2} + 9x - 6 \: are \:  -  \sqrt{3}, \sqrt{3},1,2

Additional Information :-

\rm :\longmapsto\: \alpha , \:  \beta  \: are \: zeroes \: of \:  {ax}^{2} + bx + c, \: then

 \red{\boxed{ \bf{ \:  \alpha  +  \beta  =  -  \: \dfrac{b}{a}}}}

and

 \red{\boxed{ \bf{ \:  \alpha\beta  =  \: \dfrac{c}{a}}}}

\rm :\longmapsto\: \alpha , \:  \beta,  \: \gamma  are \: zeroes \: of \:  {ax}^{3} + b {x}^{2}  + cx + d, \: then

 \red{\boxed{ \bf{ \:  \alpha  +  \beta +  \gamma   =  -  \: \dfrac{b}{a}}}}

 \red{\boxed{ \bf{ \:  \alpha \beta   +  \beta  \gamma +  \gamma \alpha  =   \: \dfrac{c}{a}}}}

and

 \red{\boxed{ \bf{ \:  \alpha\beta \gamma   =   - \: \dfrac{d}{a}}}}

Similar questions