Math, asked by Lodeddiper6150, 4 months ago

Find the altitude and area of an isoscles triangle whose perimeter is 32cm and whose base is 12cm

Answers

Answered by EnchantedGirl
8

★Given:-

  • For an isosceles triangle,
  • Perimeter = 32cm
  • Base = 12cm

★To find:-

  • Altitude
  • Area

★Solution:-

Let the congruent sides of the isosceles triangle =a

The base =b  

We know,

Perimeter of the triangle = Sum of all sides

Putting values,

→a + a + b =32

→2a+12=32

→2a = 20

→a = 20/2

→a=10cm

Therefore,length of the congruent sides of the triangle is 10cm.

The altitude of the triangle divides it into two right angled triangles,

For each equal triangle,

  • Hypotenuse = 10 cm

Base = (12/2)

  • Base = 6 cm

By pythagoras theorem,

Height = √hypotenuse² - base²

              = √(10)² - (6)²

              = √100 - 36

              = √64

             = 8 cm

Therefore,altitude = 8 cm.

Using the formula,

Area = 1/2(Base × Height)

Putting values,

→Area = (12 ×8)/2  cm²

→(96/2) cm²

→48 cm²

The area of the triangle is 48 cm².

________

Answered by Anonymous
8

AnswEr-:

  • \boxed {\mathrm {Area\:of\:\triangle =  48cm^{2}}}
  • \boxed {\mathrm {Altitude \:of\:\triangle =  8cm}}

Explanation-:

  • \sf{Given-:}

  • Perimeter of an isosceles triangle is 32cm .
  • Base of an isosceles triangle is 12 cm.

  • \sf{To\:Find-:}

  • The altitude and area of an isosceles triangle .

\dag{\mathrm{Solution \:of\:Question \:-:\:}}

\sf{Let's\:Assume-:}

  • The same side of an isosceles triangle be x

As , We know that ,

  • \underline{\boxed{\mathrm {\dag{\red{  Perimeter _{(Isosceles\:Triangle)}-: Side + Side + Base }}}}}

  • Here ,

  • Side = x cm

  • Base = 12 cm

  • Perimeter = 32 cm

Now , By Putting Known Values-:

  • \longrightarrow {\mathrm {x + x + 12 = 32}}

  • \longrightarrow {\mathrm {2x + 12=  32}}

  • \longrightarrow {\mathrm {2x=  32-12}}

  • \longrightarrow {\mathrm {2x = 20}}

  • \longrightarrow {\mathrm {x = \dfrac{\cancel {20}}{\cancel {2}}}}

  • \longrightarrow {\mathrm {x = 10}}

Therefore,

  • \longrightarrow {\mathrm {The\:length \;of\:same\:side\:of\:triangle\:is\:= 10}}

The altitude of triangle devices the isosceles Triangle in two equal parts -:

  • Then ,

  • For Each Equal Triangle-:

  • Hypotenuse = 10 [ It will remain same in both triangles ]

  • Base = 12 /2 = 6 cm [ The base will also devided in two Equal parts . ]

As , We know that -:

  • \underline{\boxed{\mathrm {\dag{\red{  By\:Pythagoras\:Theorem\:-: Height = \sqrt{(Hypotenuse)^{2}- (Base)^{2}}}}}}}

  • Here ,

  • Hypotenuse = 10 cm
  • Base = 6cm

Now , By Putting known Values-:

  • \longrightarrow {\mathrm {Height= \sqrt{(10)^{2}-(6)^{2}}}}

  • 10² = 100 , 6² = 36 .

  • \longrightarrow {\mathrm {Height= \sqrt{100-36}}}

  • \longrightarrow {\mathrm {Height= \sqrt{64}}}

  • \sf{\sqrt{64}= 8}

  • \longrightarrow {\mathrm {Height= 8cm}}

Therefore,

  • Height of Triangle is 8 cm .

As we know that ,

  • \underline{\boxed{\mathrm {\dag{\red{  Area _{(Triangle)}-: \dfrac{1}{2} \times  Base \times Height }}}}}

  • Here ,

  • Base of Triangle is = 12 cm
  • Height of Triangle = 8cm

Now, By Putting known Values-:

  • \longrightarrow {\mathrm {Area\:of\:\triangle = \dfrac{1}{2} \times 12 \times 8}}

  • \longrightarrow {\mathrm {Area\:of\:\triangle = \dfrac{1}{\cancel{2}} \times \cancel{12} \times 8}}

  • \longrightarrow {\mathrm {Area\:of\:\triangle =  6 \times 8}}

  • \longrightarrow {\mathrm {Area\:of\:\triangle =  48cm^{2}}}

Therefore ,

  • \boxed {\mathrm {Area\:of\:\triangle =  48cm^{2}}}

___________________________________________

Hence ,

  • \boxed {\mathrm {Area\:of\:\triangle =  48cm^{2}}}

  • \boxed {\mathrm {Altitude \:of\:\triangle =  8cm}}

____________________♡______________________

Similar questions