Math, asked by harkamal625, 4 months ago

Find the altitude of a trapezium whose area is 540 sq.m and the sum of its parallel sides is 36 m​

Answers

Answered by SaanviTayal
1

Answer:

30

Step-by-step explanation:

AREA OF TRAPEZIUM= 1/2H(SUM OF PARALLEL SIDES)

Let the altitude= x

x/2(36)=540

x(18)=540

x=540/18

x=30

Answered by CɛƖɛxtríα
35

The altitude of the trapezium is 30 m.

Step-by-step explanation:

{\underline{\underline{\bf{Given:}}}}

  • The area of a trapezium = 540 m²
  • The sum of its parallel sides = 36 m

{\underline{\underline{\bf{Need\:to\: find:}}}}

  • The altitude of the trapezium

{\underline{\underline{\bf{Formula\:to\:be\:used:}}}}

\underline{\boxed{\sf{{Area}_{[Trapezium]}=\dfrac{1}{2}h(a+b)\:sq.units}}}

\:\:\:\:\:\:\:\:\:\:\sf{\bullet\:h=height}

\:\:\:\:\:\:\:\:\:\:\sf{\bullet\:a=parallel\: side\:_1}

\:\:\:\:\:\:\:\:\:\:\sf{\bullet\:b=parallel\:side\:_2}

{\underline{\underline{\bf{Solution:}}}}

As we know the measure of area of the trapezium, the altitude can be found by inserting the given measures in the formula below and by solving the equation.

\leadsto{\sf{\purple{Area = \dfrac{1}{2}h(a+b)\:sq.units}}}

\:

\:\:\:\:\:\:\:\::\implies{\sf{540=\dfrac{1}{\cancel{2}}\times h\times \cancel{36}}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{540=h\times 18}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{\cancel{540}}{\cancel{18}}=h}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{\cancel{270}}{\cancel{9}}=h}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\sf{\dfrac{\cancel{90}}{\cancel{3}}=h}}

\:

\:

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\implies{\boxed{\frak{\red{30\:m}=h}}}

  • Therefore, the altitude of the trapezium is 30 m.

________________________________________

{\underline{\underline{\bf{Some\: formulae\:for\:area:}}}}

\sf{\bullet\:{Area}_{[Square]}=s^2\:sq.units}

\sf{\bullet\:{Area}_{[Rectangle]}=lb\:sq.units}

\sf{\bullet\:{Area}_{[Parallelogram]}=bh\:sq.units}

\sf{\bullet\:{Area}_{[Rhombus]}=\dfrac{1}{2}d_1d_2\:sq.units}

\sf{\bullet\:{Area}_{[Circle]}=\pi r^2\:sq.units}

\sf{\bullet\:{Area}_{[Semi\: circle]}=\dfrac{1}{2}\pi r^2\:sq.units}

Similar questions