Math, asked by priyajanti, 4 months ago

find the altitude of a triangle whose base is 40cm and area is 240cm????​

Answers

Answered by Anonymous
400

Given :-

  • A triangle whose base is 40cm and area is 240cm²

To find :-

  • Altitude of triangles

Solution :-

  • Area of triangle = 240 cm²

  • Base of triangle = 40 cm

As we know that

→ Area of triangle = ½ × b × h

Where " b " is based and " h " is height or altitude of triangle.

  • According to question

→ Area of triangle = 240

→ ½ × b × h = 240

→ ½ × 40 × h = 240

→ 20 × h = 240

→ h = 240/20

→ h = 12 cm

Hence,

  • Altitude of triangle is 12cm

Verification :-

→ Area of triangle = 240 cm²

→ ½ × b × h = 240

→ ½ × 40 × 12 = 240

→ 20 × 12 = 240

→ 240 = 240

  • Hence verified
Answered by suraj5070
208

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\sf Find\: the\: altitude\: of\: a\: triangle\: whose\\\sf base\: is\: 40\:cm\: and\: area\: is\: 240\:cm????

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Area\:of \:triangle(A) =240\:{cm}^{2}
  •  \sf \bf Base\:of \:triangle (b) =40\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Altitude \:of\:the\:triangle(h)

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\color {gold} \underline {\tt Let \:the \:altitude \:of \:the \:triangle \:be\:x}}

 {\boxed {\boxed {\color {blue} {\sf \bf A=\dfrac{1}{2}\times b\times h}}}}

  •  \sf A=area\:of\:triangle
  •  \sf b=base\:of\:triangle
  •  \sf h=altitude \:of \:triangle

 {\underbrace {\overbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies 240=\dfrac{1}{2}\times 40 \times x

 \sf \bf \implies 240 \times 2=40x

 \sf \bf \implies 480 =40x

 \sf \bf \implies x=\dfrac{480}{40}

 \sf \bf \implies x=\dfrac{48\cancel {0}}{4\cancel {0}}

 \sf \bf \implies x=\dfrac{48}{4}

 \implies {\boxed {\color {green} {\sf \bf x=12\:cm}}}

 {\color {purple} \underline {\sf \therefore The\:altitude \:of \:the \:triangle \:is \:12\:cm}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \bf Area\:of \:triangle =\dfrac{1}{2}\times b \times h

 \bf Area\:of \:rectangle =l\times b

 \bf Area\:of \:square ={a}^{2}

 \bf Area\:of \:circle =\pi {r}^{2}

Similar questions