Math, asked by sabafarheen, 11 months ago

find the altitude of rhombus whose area is 22.4 cm² and perimeter is 16

Answers

Answered by Anonymous
219

\bold{\underline{\underline{Answer:}}}

Altitude of the rhombus is 5.6 cm

\bold{\underline{\underline{Step\:by\:step\:explanation:}}}

Given :

  • Area of rhombus = 22.4 cm²
  • Perimeter of rhombus = 16 cm

To find :

  • Altitude of the rhombus

Solution :

Using the formula for perimeter of the rhombus we can find the length of side.

Formula :-

\bold{\boxed{\green{\sf{Perimeter\:of\:rhombus\:=\:4\times\:side}}}}

Let side of the rhombus be x.

Block in the values,

\bold{16=4\times\:x}

\bold{\dfrac{16}{4}} = x

\bold{4=x}

° Side of the rhombus = 4 cm

We can know use the formula for area of the rhombus and calculate the altitude.

\bold{\boxed{\green{\sf{Area\:of\:rhombus\:=\:base\times\:altitude}}}}

Base = x

Altitude = h

Block in the values,

\bold{22.4=x\times\:h}

\bold{22.4=4\times\:h}

\bold{\dfrac{22.4}{4}} = h

\bold{5.6} = h

° Altitude of the rhombus = 5.6 cm

Answered by ItsMysteriousGirl
111

\huge\bf{Answer:}

Given:

\sf{Perimeter \:of \:rhombus = 16cm}

\sf{Area\: of \:rhombus = 22.4cm^2}

To find:

\sf{Altitude\: of \:rhombus = h}

Solution:

\sf{We \:know \:that \:all \:sides\: of\: rhombus \:is \:equal.}

\sf{Therefore, \:side\: of\: rhombus}

=\frac{perimeter}{4} =\frac{16}{4}=4cm

\sf{We \:know\: that \:area \:of\: rhombus \:is\: the}\sf{product \:of\: its \:base\: and \:height as\: rhombus}\sf{too \:is\: a\: parallelogram.}

area = base \times height \\ 22.4 = side \times altitude \\ 22.4 = 4 \times h \\ h =  \frac{22.4}{4}

\boxed{h = 5.6cm}

@ItsMysteriousGirl✒️

Similar questions