Math, asked by himanshij4, 11 hours ago

Find the amount and compound interest in rs.12,000in 2 years at 8%pa

Answers

Answered by Atlas99
60

Given

  • Principal = ₹12000.
  • Rate of Interest = 8% p.a.
  • Time = 2 years.

To Find

  • Amount.
  • Compound Interest.

Solution

Calculating Amount

When P = Principal, R = Rate of Interest per annum and n = Number of years is given then the formula for A = Amount is:-

\bigstar \:\:\boxed{\sf{A = P\bigg\lgroup1+ \frac{R}{100}\bigg\rgroup}^n}\\

Substituting known values

 \sf\longmapsto{A = 12000\bigg\lgroup1+ \dfrac{8}{100}\bigg\rgroup^2} \\  \\  \\ \sf\longmapsto{A = 12000 \bigg \lgroup1 +  \frac{2}{25} \bigg \rgroup^{2} } \\  \\ \\ \sf\longmapsto{A = 12000 \bigg \lgroup \frac{25 + 2}{25} \bigg \rgroup^{2}} \\  \\ \\\sf\longmapsto{A = 12000 \bigg \lgroup \frac{27}{25} \bigg \rgroup ^{2}} \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\\sf\longmapsto{A =  \cancel{12000} \times  \frac{27}{ \cancel{25}} \times\frac{27}{25}} \\  \\  \\\sf\longmapsto{A= \frac{480\times27\times27}{25}} \:  \:  \:  \:  \:  \:  \\  \\  \\\sf\longmapsto{A =19.2 \times 27 \times 27} \:  \:  \:  \:  \:  \:  \\  \\  \\\sf\therefore \underline{\boxed{\sf{Amount= ₹13996.8}}}

 \:

Calculating Compound Interest

When A = Amount and P = Principal is given then the formula for C.I. = Compound Interest is:-

\bigstar \:\:\boxed{\sf{C.I. = Amount\:-Principal}}

Substituting known values

 \sf \longmapsto{C.I.=₹13996.8 - ₹12000} \\  \\  \\ \sf \therefore \underline{\boxed{\sf{Compound \: Interest = ₹1996.8}}}

 \:

Final Answer

  • Amount = ₹13,996.8.
  • Compound Interest = ₹1,996.8.

\\

Additional Information

If P = Principal, R = Rate of Interest per annum, n = Number of years and A = Amount then formula for A = Amount is:-

 \sf{A = P\bigg\lgroup1 +  \dfrac{R}{100}\bigg\rgroup}^n \\  \\\sf\: [When \: Interest\:is\: Compounded \: annually]

 \:

 \sf{A = P\bigg\lgroup1 +  \dfrac{R}{200}\bigg\rgroup}^{2n}\\  \\\sf\: [When \: Interest\:is\: Compounded \:halfyearly]

 \:

 \sf{A = P\bigg\lgroup1 +  \dfrac{R}{400}\bigg\rgroup}^{4n}\\  \\\sf\: [When \: Interest\:is\: Compounded \:quarterly]

 \:

 \rule{210pt}{4pt}

Answered by Anonymous
21

Step-by-step explanation:

Given :

  • Principal = 12000

  • Time = 2 years

  • Rate of interest = 8% p.a.

Formula used :

\bf{Amount \implies Principal \times{( 1 + \dfrac{R}{100})}^{time}}

Putting the values :

\bf{ Amount \implies 12000 \times {(1 + \dfrac{8}{100})}^{2}}

\bf{Amount \implies 12000 \times {(\dfrac{108}{100})}^{2}}

\bf{Amount \implies 12000 \times {(\dfrac{27}{25})}^{2}} \\  \\ \bf{Amount \implies 12000 \times \dfrac{27}{25} \times \dfrac{27}{25}} \\ \\  \bf{Amount \implies \cancel{12000} \times \dfrac{27}{25} \times \dfrac{27}{\cancel{25}}} \\  \\ \bf{Amount \implies 480 \times \dfrac{27}{25} \times 27} \\ \\ \bf{Amount \implies 19.2 \times 27 \times 27} \\ \\  \bf{Amount \implies 13996.8}

Compound Interest :

Amount - Principal

= 13996 - 12000

= 1996

Similar questions