Math, asked by freefirelover94, 3 months ago

Find the amount and compound interest payable annually on Rs16000 for 2 years at 15% and

12% for the successive years.​

Answers

Answered by ImperialGladiator
7

Answer:

  • Amount = ₹20,608
  • Compound interest = ₹4,608

Explanation:

Question says that,

A sum of ₹16,000 is to be compound annually for 2 successive years at the rate of 15% and 12% respectively.

Find the amount and the compound interest.

Using the formula :

 \sf \longrightarrow  Amount = p \bigg(1 +  \dfrac{r_1}{100}  { \bigg)} \times  \bigg( 1 +  \dfrac{r_2}{100} \bigg)

Where,

  • ‘p’(principal) = 16,000
  • \sf r_1 (rate for the first year) : 15%
  • \sf r_2 (rate for the second year) : 12%

So, the amount is :

\sf \longrightarrow   16000\bigg(1 +  \dfrac{15}{100}  { \bigg)} \times  \bigg( 1 +  \dfrac{12}{100} \bigg) \\

\sf \longrightarrow  16000 \bigg(1 +   \frac{3}{20} \bigg) \times \bigg(1 +   \frac{3}{25} \bigg)\\

\sf \longrightarrow  16000  \times \frac{23}{20}  \times  \frac{28}{25} \\

\sf \longrightarrow  32 \times 23  \times 28\\

\sf \longrightarrow  20608 \\

Therefore,the amount is ₹20,608

So, the compound interest is :

→ C. I. = Amount - principal

→ C. I. = 20,608 - 16,000

→ C. I. = ₹4,608

Hence, the compound interest is 4,608.

Answered by mathdude500
3

\sf\large\underline\green{Given:-}

\sf{\implies Sum\:_{(money)}= \: Rs \: 16000}

\sf{\implies Time\:_{(annually)}=2\: years}

\sf{\implies Rate\:_{(interest=r_1)}=15\% \: for \:  {1}^{st } \: year }

\sf{\implies Rate\:_{(interest=r_2)}=12\% \: for \:  {2}^{nd}  \: year}

\sf\large\underline\purple{To\: Find:-}

\sf{\implies Amount\:_{(after\:2\: years)}=?}

\sf{\implies Interest\:_{(after\:2\: years)}=?}

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

We know,

  • Amount is given by

 \boxed{ \pink{\rm \longrightarrow Amount = P \bigg(1 + \dfrac{r_1}{100} { \bigg)}  ^{t_1} \times \bigg( 1 + \dfrac{r_2}{100} \bigg) ^{t_2} }}

Where,

 \bullet \:  \blue{ \sf \: P \:  represents \:  Principal }

 \bullet \:  \blue{\sf r_1 \: represents \:  rate  \: for \:  the  \: t_1 \: years}

 \bullet \:  \blue{\sf r_2 \: represents \:  rate  \: for \:  the  \: t_2 \: years}

and

  • Interest is given by

 \longrightarrow \: \large \boxed{ \green{ \rm \: Interest = Amount - Principal }}

\large\underline\purple{\bold{Solution :-  }}

Given that

 \bullet \:  \blue{ \rm \: Principal  \:  =  \: Rs \: 16000}

 \bullet \:  \blue{\sf r_1 \:  = rate \:  for \:  the  \: first  \: year = 15\%}

 \bullet \:  \blue{\sf r_2 \:  = rate  \: for \:  the \:  second \:  year = 12\%}

So,

Amount is evaluated by using the formula, we get

\rm :\implies\:Amount = P \bigg(1 + \dfrac{r_1}{100} { \bigg)} \times \bigg( 1 + \dfrac{r_2}{100} \bigg)

\rm :\implies\:Amount = 16000 \bigg(1 + \dfrac{15}{100} { \bigg)} \times \bigg( 1 + \dfrac{12}{100} \bigg)

\rm :\implies\:Amount = 16000 \bigg( \dfrac{115}{100} { \bigg)} \times \bigg( \dfrac{112}{100} \bigg)

\rm :\implies\:Amount = 16000 \times  \bigg(1.15{ \bigg)} \times \bigg( 1.12 \bigg)

 \large \boxed{ \blue{\rm :\implies\:Amount = Rs \: 20608}}

Now,

Its Interest is evaluated using,

 \boxed{  \implies \: \green{ \rm \: Interest = Amount - Principal }}

\rm :\implies\:Interest \:  = 20608 - 16000

 \large{\boxed{  \implies \green{ \rm \: Interest = Rs \: 4608}}}

Similar questions