Math, asked by Anonymous, 3 months ago

Find the amount and compound interest when the interest is compounded
annually.

i) Principal = Rs 5000, Time = 3 years,Rate = 5% per annum

ii) Principal = Rs 2000,Time = 2 years,Rate = 8% per annum

.
.
.
.​

Answers

Answered by Anonymous
1

Answer:

Formulas used in this question :

 \boxed{ \sf \purple{Amount =  \green{P   \: \bigg[1 \:  + \:  \dfrac{R}{100} \bigg]^{n} }}}

 \boxed { \sf \purple {Compound \:  interest  \: =  \green{ \: Amount \:  -  \:  Principal }} }

Solution : 1

 \bf \red{Given \:  : }

 \sf \: Principal  \: :  \: Rs. 5000

 \sf \: Time \:  : \:  3 \:  years

 \sf \: Rate \:  :  \: 5  \: \%

 \bf \:  \red{To \:  find \:  : }

\sf We \: have \:to \:find \:the \:amount\: and \:CI.

\bf \red{So, \:  Let's  \: Start : }

\sf Amount =  5000   \: \bigg[1 \:  + \:  \dfrac{5}{100} \bigg]^{3}

\sf Amount =  5000   \: \bigg[1 \:  + \:  \dfrac{1}{20} \bigg]^{3}

\sf Amount =  5000   \: \bigg[ \dfrac{20 + 1}{20} \bigg]^{3}

\sf Amount =  5000   \: \times   \:  \dfrac{21}{20} ^{3}

\sf Amount =  5000  \: \times   \:  \dfrac{9261}{8000}

\sf Amount =  5  \: \times   \:  \dfrac{9261}{8}

\sf Amount =   \dfrac{46305}{8}  \:  =  \red{Rs.  \: 5788.125}

 \sf \: CI   = \:  5788.125 \:  -  \:  5000 \:  =  \: \red{Rs.  \: 788.125 }

________________________________

Solution - 2

 \bf \red{Given \:  : }

 \sf \: Principal  \: :  \: Rs. 2000

 \sf \: Time \:  : \: 2\:  years

 \sf \: Rate \:  :  \: 8  \: \%

 \bf \:  \red{To \:  find \:  : }

\sf We \: have \:to \:find \:the \:amount\: and \:CI.

\bf \red{So, \:  Let's  \: Start : }

\sf Amount =  2000   \: \bigg[1 \:  + \:  \dfrac{8}{100} \bigg]^{2}

\sf Amount =  2000   \: \bigg[1 \:  + \:  \dfrac{2}{25} \bigg]^{2}

\sf Amount =  2000   \: \bigg[ \:  \dfrac{25 + 2}{25} \bigg]^{2}

\sf Amount =  2000   \:  \times  \:  \dfrac{27}{25} ^{2}

\sf Amount =  2000   \:  \times  \:  \dfrac{729}{625}

 \sf \:  So, \:  the  \: amount \:  = \red{ Rs. \: 2332.8 }

 \sf \: CI   = \:  2332.8 \:  -  \:  2000 \:  =  \: \red{Rs.  \: 332.8 }

Similar questions