Math, asked by dharmendarakeshari, 4 months ago

find the amount and the compound interest on 15000 for 2 years at 12% p.a compounded annually.​

Answers

Answered by Anonymous
7

GiveN:-

  • Principal = Rs.15000
  • Rate = 12%
  • Time = 2 years

To FinD:-

The amount and compound interest.

SolutioN:-

We know that,

\normalsize{\purple{\underline{\boxed{\bf{Amount=P\left(1+\dfrac{R}{100}\right)^n}}}}}

where,

  • P = principal = Rs.15,000
  • R = rate = 12%
  • n = time = 2 years

Putting the values,

 \\ :\normalsize\implies{\sf{Amount=15000\left(1+\dfrac{12\%}{100}\right)^2}}

 \\ :\normalsize\implies{\sf{Amount=15000\left(1+\dfrac{\cancel{12}}{\cancel{100}}\right)^2}}

 \\ :\normalsize\implies{\sf{Amount=15000\left(1+\dfrac{3}{25}\right)^2}}

 \\ :\normalsize\implies{\sf{Amount=15000\left(\dfrac{25+3}{25}\right)^2}}

 \\ :\normalsize\implies{\sf{Amount=15000\left(\dfrac{28}{25}\right)^2}}

 \\ :\normalsize\implies{\sf{Amount=15000\left(\dfrac{28}{25}\times\dfrac{28}{25}\right)}}

 \\ :\normalsize\implies{\sf{Amount=15000\times\dfrac{28}{25}\times\dfrac{28}{25}}}

 \\ :\normalsize\implies{\sf{Amount=\cancel{15000}\times\dfrac{28}{\cancel{25}}\times\dfrac{28}{25}}}

 \\ :\normalsize\implies{\sf{Amount=600\times28\times\dfrac{28}{25}}}

 \\ :\normalsize\implies{\sf{Amount=\cancel{600}\times28\times\dfrac{28}{\cancel{25}}}}

 \\ :\normalsize\implies{\sf{Amount=24\times28\times28}}

 \\ \normalsize\quad\quad\therefore\boxed{\mathfrak{\pink{Amount=Rs.18,816.}}}

Now the Compound Interest :

We know that,

\normalsize{\purple{\underline{\boxed{\bf{Compound\:Interest=Amount-Principal}}}}}

where,

  • Amount = Rs.18,816
  • Principal = Rs.15,000

Putting the values,

 \\ :\normalsize\implies{\sf{Compound\:Interest=Rs.(18816-15000)}}

 \\ \normalsize\quad\therefore\boxed{\mathfrak{\pink{Compound\:Interest=Rs.3,816.}}}

Amount = Rs.18,816.

Compound Interest = Rs.3,816.

Answered by kushmita07
10

It's my pleasure to help you.....

MARK me as BRAINLIEST please.....

Attachments:
Similar questions