Math, asked by irkprkashikr, 3 months ago

find the amount and the compound interest on Rs 10000 for 1 and half years at 10% per annum compounded half yearly​

Answers

Answered by prakshirathore123
1

Answer:

Amount= RS 11576.25

C.I  = Rs 1576.25

Step-by-step explanation:

Answered by MrAnonymous412
19

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf\large \underbrace{\underline{ Understanding \: compound \: intereste }} \\  \\

Compound interest is the addition of interest to the principal sum of loan or deposit. it's a result of reinventing intereste, rather than paying it out ,so the interest in the next period is than earned on the principal sum + previously accumulated intereste.

  \\  \color{purple}\large\sf \underline{ \: Question :- } \\  \\

Find the amount and the compound interest on Rs 10000 for 1 and half years at 10% per annum compounded half yearly.

  \\  \color{purple}\large\sf \underline{ \: Solution :- } \\  \\

The total accumulated amount A , on the principal sum P + compound interest I ,

We know following formula :-

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \underline{\boxed{\sf \: A = P { \brace {1 +  \frac{r}{n} }} ^{nt} }} \\  \\  \sf \: in \: this \: , \:\bold{A} = Amount \:  obtained \: \\  \sf \:  \:\bold{t } \: is \:  the   \: numbe r  \: of  \: years ,  \: \bold{ r } \: is \:  the  \: rate   \\  \sf\:\bold{ p } \: is  \: the  \: principal  \:  \bold{n  }\: is \:  the \:   \:  \: number  \: of \:  \:  times  \: the  \: interest  \: given  \: in \:  year \:  \\  \\

 \\  \\  \sf \:  \: The \:  total  \: compound \:  interest \:  generated \:  is  \: given   \\   \underline{\sf by: I = A - P } \\  \\

 \\  \sf \: Now , \:  we  \: have  \: been  \: given \:  that  \:  \\  \\

 \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \green{\rm \: P = Rs  \: 10000 \:  \:  \:  and \:  \:  \:  r = 10 \%} \\  \\

 \\  \sf \: Therefore  \: amount  \: credited  \: in \:  1 \:  year  \:

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \: A =  \: 10000 \times { (1 +  \frac{10}{2 \times 100} )} ^{2 \times 1}  \\  \\

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   : \implies \: 10000 \times { (1 +  \frac{5}{100} )} ^{2 }  \\  \\

 \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   : \implies \: 10000 \times { ( \frac{105}{100} )} ^{2 }  \\  \\

 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   : \implies \:  { ( {105})} ^{2 }  \\  \\

 \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   : \implies \:    \underline{\boxed{\frak \color{navy} { {11025}}}   }\\  \\

 \\  \sf \: Also,  \: compound  \: interest  \: will  \: be

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {\sf  I = A - P }

 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \sf11025  \: -  \: 10000 \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \longrightarrow \sf \underline{ 1025} \\  \\

Hence ,

 \\  \bold{\underline{ \:  \: The \:  amount  \: and \:  interest \:  is  \: Rs \: .11025  \: and  \: Rs.1025 \:  respectively. \:  \:  \: }}

Similar questions