Math, asked by lalremruatidaphne, 3 days ago

Find the Amount and the Compound Interest on Rs 125000 for 1 1/2 years at 4% per annum compounded half-yearly.​

Answers

Answered by mathdude500
35

\large\underline{\sf{Solution-}}

Given that,

Principal, P = Rs 125000

Rate of interest, r = 4 % per annum compounded half yearly.

Time, n = 1 1/2 years = 3/2 years

We know,

Amount on a certain sum of money of Rs P invested at the rate of r % per annum compounded half yearly for n years is given by

\boxed{\sf{  \: \: Amount \:  =  \: P \:  {\bigg[1 + \dfrac{r}{200} \bigg]}^{2n} \: }} \\

On substituting the values, we get

\rm \: Amount \:  =  \: 125000 {\bigg[1 + \dfrac{4}{200} \bigg]}^{3}  \\

\rm \: Amount \:  =  \: 125000 {\bigg[1 + \dfrac{2}{100} \bigg]}^{3}  \\

\rm \: Amount \:  =  \: 125000 {\bigg[ \dfrac{100 + 2}{100} \bigg]}^{3}  \\

\rm \: Amount \:  =  \: 125000 {\bigg[ \dfrac{102}{100} \bigg]}^{3}  \\

\rm \: Amount \:  =  \: 125000 {\bigg[ 1.02 \bigg]}^{3}  \\

\rm\implies \:Amount \:  =  \: 132651 \\

We know,

\rm \: Compound\:Interest \:  =  \: Amount \:  -  \: P \:  \\

\rm \: =  \: 132651 - 125000 \\

\rm \: =  \: 7651 \\

So,

\rm\implies \:Compound\:Interest \:  =  \: 7651 \\

Hence,

Amount = Rs 132651

and

Compound Interest = Rs 7651

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

1. Amount on a certain sum of money of Rs P invested at the rate of r % per annum compounded yearly for n years is given by

\boxed{\sf{  \: \: Amount \:  =  \: P \:  {\bigg[1 + \dfrac{r}{100} \bigg]}^{n} \: }} \\

2. Amount on a certain sum of money of Rs P invested at the rate of r % per annum compounded quarterly for n years is given by

\boxed{\sf{  \: \: Amount \:  =  \: P \:  {\bigg[1 + \dfrac{r}{400} \bigg]}^{4n} \: }} \\

3. Amount on a certain sum of money of Rs P invested at the rate of r % per annum compounded monthly for n years is given by

\boxed{\sf{  \: \: Amount \:  =  \: P \:  {\bigg[1 + \dfrac{r}{1200} \bigg]}^{12n} \: }} \\

Answered by talpadadilip417
22

Step-by-step explanation:

 \color{blue} \text{Given, \( \tt P=125000  \: R S, t=1 \dfrac{1}{2}=\dfrac{3}{2} \) years,  Rate\( \tt R=4 \% \)}

Find Amount and compound interest :

\color{red} \underline{ \begin{array}{  || |l| ||  }  \hline  \color{magenta} \\ \hline\hline\hline \boxed{ \text{ \tt \: Solution:-}  }  \end{array}}

 \color{indigo} \text{   \( \tt R=4 \% \:  \:  \Rightarrow R=\dfrac{4}{2}=2 \% \) for half yeariy}

 \color{olive} \[ \begin{array}{l}  \tt A=P\left(1+\dfrac{R}{100}\right)^{n} \qquad(\therefore n=  \text{time } =3  \:  \: \text{half  \: yearly)}  \\ \\  \tt A=125000\left(1+\dfrac{2}{100}\right)^{3} \\ \\  \tt A=125000\left(\dfrac{106}{100}\right)^{3} \\ \\  \tt A=125000\left(\dfrac{53}{50}\right)^{3} \\ \\  \tt A=125000 \times \dfrac{53}{50} \times \dfrac{53}{50} \times \dfrac{53}{50} \\ \\  \tt A=148877 Rs \\  \\  \tt\text {( Compound Interest) } C I=A-P \\ \\  \tt C  I=148877-125000 \\ \\  \tt  \boxed{ \tt \: C  I  =23877 \text { Rs. }} \end{array} \]

Hence, Amount =148877 Rs and C I=23877 Rs.

Similar questions