Math, asked by eramvar09, 6 hours ago

Find the amount of money that will be accumulated in a savings account if $4175 is invested at 6.0% for 17 years and the interest is compounded continuously. Round your answer to two decimal places.

Answers

Answered by sumanhoneypari
0

Answer:

11,242.37

Step-by-step explanation:

principal=$4175

rate=6%

time=17 years

amount = \: pricipal (1 +  \frac{rate}{100} )^{time \\ }  \\

 = 4175(1 +  \frac{6}{100} )^{17} \\  \\  = 4175 \times ( \frac{106}{100}) ^{17 \\ } \\  \\  = 4175 \times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100}\times  \frac{106} {100} \\  \\  = 4175 \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50} \times  \frac{53}{50}  \\  \\ or \\  \\ = 4175 \times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06\times 1.06 \\  \\  = 11242.37(approx)

Similar questions