Math, asked by devanshkumawat080, 2 months ago

Find the amount of Rs.24000 after 3 years, when the interest is compounded annually at the rate

of 20% per annum.​

Answers

Answered by SachinGupta01
10

Formula of Amount

\boxed {\mathrm {A \: = \: P \left( 1 + \dfrac{R}{100}\right)^{n} }}

Here,

  • R = Rate of Interest
  • P = Principal
  • n = Time

Given

Principal = Rs.24000

Rate of Interest = 20% per annum.

Time = 3 years.

To Find

We have to Find the Amount.

So, Let's Start

 \sf \: A  \: =  \: 24000 \bigg( 1 + \dfrac{20}{100}\bigg)^{3}

 \sf \: A  \: =  \: 24000 \bigg(  \dfrac{ 100+ 20}{100}\bigg)^{3}

 \sf \: A  \: =  \: 24000 \bigg(  \dfrac{ 120}{100}\bigg)^{3}

 \sf \: A  \: =  \: 24000  \times  \dfrac{ 12\cancel{0}}{10\cancel{0}} \times \dfrac{ 12\cancel{0}}{10\cancel{0}} \times \dfrac{ 12\cancel{0}}{10\cancel{0}}

 \sf \: A  \: =  \: 24\cancel{000} \times  \dfrac{ 12}{1\cancel{0}} \times \dfrac{ 12}{1\cancel{0}} \times \dfrac{ 12}{1\cancel{0}}

 \sf \: A  \: =  \: 24  \times  \dfrac{ 12}{1} \times \dfrac{ 12}{1} \times \dfrac{ 12}{1}

 \sf \: A  \: =  \: 24   \times 12 \times 12 \times 12 = 41472

 \sf \: So, \:  the  \: Amount  \: = \:  Rs.41472

Similar questions