Math, asked by edha82, 4 months ago

Find the amount on ₹ 12,000 for two years,if the interest is compounded annually and the rate of interest is 10% of the first year and 5% for the second year.​

Answers

Answered by AestheticSoul
86

Given

  • Principal = ₹ 12,000
  • Time = 2 years
  • Rate for the first year = 10 %
  • Rate for the second year = 5 %

To find

  • Amount

Knowledge required :-

\boldsymbol{Amount = P \bigg[1 +  \dfrac{r}{100} \bigg]^{n}}

where,

  • P = Principal
  • r = rate
  • n = time

Solution

  \\ : \implies\boldsymbol{Amount = P \bigg[1 +  \dfrac{r}{100} \bigg]^{n}}

  \\ : \implies\boldsymbol{Amount = 12000 \bigg[1 +  \dfrac{10}{100} \bigg]\bigg[1 +  \dfrac{5}{100} \bigg]}

  \\ : \implies\boldsymbol{Amount = 12000 \bigg[1 +  \dfrac{1 \not0}{10 \not0} \bigg]\bigg[1 +  \dfrac{ \not5}{ \cancel{100}} \bigg]}

\\ : \implies\boldsymbol{Amount = 12000 \bigg[1 +  \dfrac{1}{10} \bigg]\bigg[1 +  \dfrac{1}{20} \bigg]}

\\ : \implies\boldsymbol{Amount = 12000 \bigg[ \dfrac{10 + 1}{10} \bigg]\bigg[ \dfrac{20 + 1}{20} \bigg]}

\\ : \implies\boldsymbol{Amount = 12000 \bigg[ \dfrac{11}{10} \bigg]\bigg[ \dfrac{21}{20} \bigg]}

\\ : \implies\boldsymbol{Amount = 12000  \times \dfrac{11}{10}  \times \dfrac{21}{20}}

\\ : \implies\boldsymbol{Amount = 120 \not0 \not0  \times \dfrac{11}{1 \not0}  \times \dfrac{21}{2 \not0}}

\\ : \implies\boldsymbol{Amount = 120  \times 11\times \dfrac{21}{2}}

\\ : \implies\boldsymbol{Amount =  \not120  \times 11\times \dfrac{21}{ \not2}}

\\ : \implies\boldsymbol{Amount =  60  \times 11\times 21}

\\ : \implies\boldsymbol{Amount = 13,860}

━━━━━━━━━━━━━━━

Some related formulae :-

\bullet \: \: \boldsymbol{Simple~Interest = \dfrac{P \times R \times T}{100}}

\bullet \:  \: \boldsymbol{C.I. = P \bigg[1 + \dfrac{r}{100} \bigg]^{n}  - P}

\bullet\: \: \boldsymbol{Compound~Interest = Amount - Principal}

\bullet\: \: \boldsymbol{Amount = Compound~Interest + Principal}

Answered by diajain01
34

{\boxed{\underline{\tt{ \orange{Required  \:  \: answer:-}}}}}

★GIVEN:-

  • Principle - Rs. 12,000

  • Time - 2 Years

  • Rate - 10% and 5%

★TO FIND:-

  • AMOUNT

★FORMULA USED:-

{ \boxed{ \underline {\bf{A = P  {(1+ \frac{R }{100} )}^{T}}}}}

★SOLUTION:-

:\implies \sf{12,000 (1 + \frac{10}{100} )(1+ \frac{5}{100} )}

:\implies \sf{12,000( \frac{100 + 10}{100}) (  \frac{100 + 5}{100} })

:\implies \sf{12,000( \frac{110}{100}) (  \frac{105}{100} })

:\implies \sf{12,0 \cancel{00}( \frac{11}{1 \cancel{0}}) (  \frac{21}{2 \cancel{0}} })

 : \implies \sf{ \cancel{ 120} (11)( \frac{21}{ \cancel{2}} })

: \implies \sf{ \: 60  \times 11 \times 21}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \boxed{ \underline{ \sf{ \huge{ \purple{rs. \: 13680}}}}}}

So, the Amount is Rs. 13,680

MORE TO KNOW:-

  • A = P (1+ r/n)^nt

  • C.I. = P(1 + R/100)^n -P

  • I = Prt

  • C = P [(1+r)^n -1]

  • S.I. = P × R × T /100

  • Amount = Principal + Compound Interest.

★HERE,

C -- Compound Interest.

P -- Principal (original balance)

r -- rate per period

n -- number of periods

P -- principal sum

T -- time

A -- Future value

Similar questions