Math, asked by gamingop831, 4 months ago



Find the amount on Rs. 12,000 in 3 years, when the rates of interest for
successive years are 8%, 10%, 12% respectively.​

Answers

Answered by MasterDhruva
6

Answer (1) :-

Principle :- ₹ 12000

Rate of interest :- 8%

Time :- 3 years

Total Amount :-

{\tt \longrightarrow \bigg( \dfrac{12000 \times 8 \times 3}{100} \bigg) + 12000}

{\tt \longrightarrow \dfrac{\cancel{12000} \times 8 \times 3}{\cancel{100}} = \boxed{\tt 120 \times 8 \times 3}}

{\tt \longrightarrow 120 \times 24 = Rs \: \: 2880}

{\tt \longrightarrow 2800 + 12000}

{\tt \longrightarrow \boxed{\tt Rs \: \: 14880}}

Answer (2) :-

Principle :- ₹ 12000

Rate of interest :- 10%

Time :- 3 years

Total Amount :-

{\tt \longrightarrow \bigg( \dfrac{12000 \times 10 \times 3}{100} \bigg) + 12000}

{\tt \longrightarrow \dfrac{\cancel{12000} \times 10 \times 3}{\cancel{100}} = \boxed{\tt 120 \times 10 \times 3}}

{\tt \longrightarrow 120 \times 30 = Rs \: \: 3600}

{\tt \longrightarrow 3600 + 12000}

{\tt \longrightarrow \boxed{\tt Rs \: \: 15600}}

Answer (3) :-

Principle :- ₹ 12000

Rate of interest :- 12%

Time :- 3 years

Total Amount :-

{\tt \longrightarrow \bigg( \dfrac{12000 \times 12 \times 3}{100} \bigg) + 12000}

{\tt \longrightarrow \dfrac{\cancel{12000} \times 12 \times 3}{\cancel{100}} = \boxed{\tt 120 \times 12 \times 3}}

{\tt \longrightarrow 120 \times 36 = Rs \: \: 4320}

{\tt \longrightarrow 4320 + 12000}

{\tt \longrightarrow \boxed{\tt Rs \: \: 16320}}

━━━━━━━━━━━━━━━━━━━━━━

\dashrightarrow Formula used :-

Total amount :- {\boxed{\tt\dfrac{P \times R \times T}{100} + Principle}}

━━━━━━━━━━━━━━━━━━━━━━

\dashrightarrow Some related formulas :-

Simple Interest :- {\boxed{\tt\dfrac{P \times R \times T}{100}}}

Principle :- {\boxed{\tt\dfrac{SI \times 100}{R \times T}}}

Rate of interest :- {\boxed{\tt\dfrac{SI \times 100}{P \times T}}}

Time :- {\boxed{\tt\dfrac{SI \times 100}{P \times R}}}

Similar questions