Math, asked by nerd01, 4 months ago

Find the amount on Rs 500 for 2 years at 10% p.a. compounded annually

Answers

Answered by sweetcandy42
0

Step-by-step explanation:

EXPLANATION.

\sf \implies \lim_{\Delta x \to 0} \dfrac{(x + \Delta x)^{2} - 2(x + \Delta x)+ 1 - (x^{2}- 2x + 1) }{\Delta x}⟹lim

Δx→0

Δx

(x+Δx)

2

−2(x+Δx)+1−(x

2

−2x+1)

As we know that,

First we can put the value of Δx in equation,

And check in which form the equation is.

\sf \implies \lim_{\Delta x \to 0} \dfrac{(x + 0)^{2} - 2(x + 0)+ 1 - (x^{2}- 2x + 1) }{0}.⟹lim

Δx→0

0

(x+0)

2

−2(x+0)+1−(x

2

−2x+1)

.

\sf \implies \lim_{\Delta x \to 0} \dfrac{(x)^{2} - 2x+ 1 - x^{2}+ 2x - 1) }{0}.⟹lim

Δx→0

0

(x)

2

−2x+1−x

2

+2x−1)

.

\sf \implies \lim_{\Delta x \to 0} \dfrac{0}{0}.⟹lim

Δx→0

0

0

.

As we can see it is in the form of 0/0,

We can simply equate (factorizes) this equation, we get.

\sf \implies \lim_{\Delta x \to 0} \dfrac{(x^{2} + \Delta x^{2} + 2x\Delta x ) + (- 2x - 2 \Delta x) + 1 - (x^{2} - 2x + 1)}{\Delta x}.⟹lim

Δx→0

Δx

(x

2

+Δx

2

+2xΔx)+(−2x−2Δx)+1−(x

2

−2x+1)

.

\sf \implies \lim_{\Delta x \to 0} \dfrac{x^{2} + 2x \Delta x + \Delta x^{2} - 2x - 2 \Delta x + 1 - x^{2} + 2x - 1}{\Delta x}.⟹lim

Δx→0

Δx

x

2

+2xΔx+Δx

2

−2x−2Δx+1−x

2

+2x−1

.

\sf \implies \lim_{\Delta x \to 0} \dfrac{2x \Delta x + \Delta x^{2} - 2 \Delta x}{\Delta x}.⟹lim

Δx→0

Δx

2xΔx+Δx

2

−2Δx

.

\sf \implies \lim_{\Delta x \to 0} \dfrac{\Delta x(2x + \Delta x - 2)}{\Delta x}.⟹lim

Δx→0

Δx

Δx(2x+Δx−2)

.

Put the value of Δx = 0 in equation, we get.

\sf \implies \lim_{\Delta x \to 0} 2x + 0 - 2.⟹lim

Δx→0

2x+0−2.

\sf \implies \lim_{\Delta x \to 0} 2x - 2.⟹lim

Δx→0

2x−2.

\sf \implies \lim_{\Delta x \to 0} \dfrac{(x + \Delta x)^{2} - 2(x + \Delta x)+ 1 - (x^{2}- 2x + 1) }{\Delta x} = 2x - 2.⟹lim

Δx→0

Δx

(x+Δx)

2

−2(x+Δx)+1−(x

2

−2x+1)

=2x−2.

Answer = (2x - 2).

Answered by AllenGPhilip
3

Answer:

Step-by-step explanation:

Given

Principle = 500

Time = 2 yrs

Rate of interest = 10%

Have to find amount

Attachments:
Similar questions