Math, asked by sahibarahman91, 1 month ago

Find the amount on Tk. 28,000 at the rate of 7.5% p. a. for 10 years.


Tk. 21,000

Tk. 49,500

Tk.21,500

Tk. 49,000​

Answers

Answered by TheBrainliestUser
51

Answer:

  • The amount on Tk. 28,000 at the rate of 7.5% p. a. for 10 years is Tk. 49,000.

Step-by-step explanation:

Given that:

  • Principal = Tk. 28,000
  • Rate = 7.5% p.a.
  • Time = 10 years

To Find:

  • What is the amount?

Formula used:

In Simple interest.

  • S.I. = (P × R × T)/100
  • A = P + S.I.

Where,

  • S.I. = Simple interest
  • A = Amount
  • P = Principal
  • R = Rate
  • T = Time

Finding the simple interest:

⟶ S.I. = (28000 × 7.5 × 10)/100

⟶ S.I. = 2100000/100

⟶ S.I. = 21000

∴ Simple interest = Tk. 21,000

Finding the amount:

⟶ A = 28000 + 21000

⟶ A = 49000

∴ Amount = Tk. 49,000

Answered by Anonymous
109

{\large{\pmb{\sf{\bigstar \:{\underline{Explanation...}}}}}}

★ We have to find the amount on Tk 28,000 at the rate of 7.5 percentage per annum for 10 years.

  • Tk. 21,000, Tk. 49,500, Tk.21,500 and Tk. 49,000

Given that:

  • Principle = 28,000 Tk
  • Rate of interest = 7.5 %
  • Time = 10 years

To find:

  • Amount

Solution:

  • Amount = Tk. 49,000

Using concepts:

  • Simple Interest Formula
  • Finding Amount Formula

Using formulas:

{\small{\underline{\boxed{\sf{\bull \: SI \: = \dfrac{P \times R \times T}{100}}}}}}

{\small{\underline{\boxed{\sf{\bull \: A \: = P \: + SI}}}}}

Where:

  • SI denotes Simple Interest
  • P denotes Principle
  • R denotes Rate of Interest
  • T denotes Time
  • A denotes Amount

Full Solution:

~ For finding amount firstly we have to find out the simple interest, let's find it!

{\small{\underline{\boxed{\sf{\bull \: SI \: = \dfrac{P \times R \times T}{100}}}}}} \\ \\ :\implies \sf SI \: = \dfrac{P \times R \times T}{100} \\ \\ :\implies \sf SI \: = \dfrac{28,000 \times 7.5 \times 10}{100} \\ \\ :\implies \sf SI \: = \dfrac{2,80,000 \times 7.5}{100} \\ \\ :\implies \sf SI \: = \dfrac{2,80,0  \: \cancel{00} \times 7.5}{\cancel{100}} \\ \\ :\implies \sf SI \: = 2,800 \times 7.5 \\ \\ :\implies \sf SI \: = 21000 \: Tk.

{\underline{\frak{Henceforth, \: 21,000 \: Tk. \: is \: SI}}}

~ Now let's find amount!

{\small{\underline{\boxed{\sf{\bull \: A \: = P \: + SI}}}}} \\ \\ :\implies \sf A \: = P \: + SI \\ \\ :\implies \sf A \: = 28,000 + 21,000 \\ \\ :\implies \sf A \: = 49,000 \: Tk.

{\underline{\frak{Henceforth, \: 49,000 \: Tk. \: is \: Amount}}}

Some important formulas -

\begin{gathered}\begin{gathered}\large\boxed{ \begin{array}{cc}\large\sf\dag \: {\underline{More \: Formulae}} \\ \\ \bigstar \: \sf{Gain = S.P – C.P} \\ \\ \bigstar \:\sf{Loss = C.P – S.P} \\ \\ \bigstar \: \sf{Gain \: \% = \Bigg( \dfrac{Gain}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{loss \: \% = \Bigg( \dfrac{loss}{C.P} \times 100 \Bigg)\%} \\ \\ \bigstar \: \sf{S.P = \dfrac{100+Gain\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100+Gain\%} \times S.P} \\ \\\bigstar \: \sf{ S.P = \dfrac{100-loss\%}{100} \times C.P} \\ \\ \bigstar \: \sf{ C.P =\dfrac{100}{100-loss\%} \times S.P}\end{array} }\end{gathered}\end{gathered}


RvChaudharY50: good.
Similar questions