Math, asked by pratikagadnyan, 4 months ago

Find the amount to be paid at the end of 3 years in each of the following cases.

i. P = Rs 15000 at 10.5% p.a

ii. p = Rs.18500 at 8.5% p.a​

Answers

Answered by guptavishrut
4

Answer:

Step-by-step explanation:

I) P = Rs 15000 ; R = 10.5% p.a ; T = 3 Yrs

SI = (P X R X T)/ 100

=> (15000 X 10.5 X 3)/100

=> Rs 4725

Amount = ( P + SI )

=>Rs ( 15000+4725)

=> Rs 19725 ( Answer)

2)p = Rs.18500 ; R = 8.5% p.a ; T = 3 Yrs

SI =(P X R X T)/ 100

=> Rs ( 18500 X 8.5 X 3)/ 100

=> Rs 4717.50

Amount = ( P + SI )

=> Rs (18500 + 4717.50)

=> Rs 23217.50 ( Answer)

Answered by MasterDhruva
10

Answer (1) :-

Principle :- ₹ 15000

Rate of interest :- 10.5%

Time :- 3 years

Total Amount :-

{\tt \longrightarrow \bigg( \dfrac{15000 \times 10.5 \times 3}{100} \bigg) + 15000}

{\tt \longrightarrow \dfrac{\cancel{15000} \times 10.5 \times 3}{\cancel{100}} = 150 \times 10.5 \times 3}

{\tt \longrightarrow 150 \times 31.5 = 4725}

{\tt \longrightarrow 4725 + 15000}

{\tt \longrightarrow Rs \: \: 19725}

Answer (2) :-

Principle :- ₹ 18500

Rate of interest :- 8.5%

Time :- 3 years

Total Amount :-

{\tt \longrightarrow \bigg( \dfrac{18500 \times 8.5 \times 3}{100} \bigg) + 18500}

{\tt \longrightarrow \dfrac{\cancel{18500} \times 10.5 \times 3}{\cancel{100}} = 185 \times 8.5 \times 3}

{\tt \longrightarrow 185 \times 25.5 = 4717.5}

{\tt \longrightarrow 4717.5 + 18500}

{\tt \longrightarrow Rs \: \: 23217.5}

━━━━━━━━━━━━━━━━━━━━━━

\dashrightarrow Some related formulas :-

Simple Interest :- {\boxed{\tt\dfrac{P \times R \times T}{100}}}

Principle :- {\boxed{\tt\dfrac{SI \times 100}{R \times T}}}

Rate of interest :- {\boxed{\tt\dfrac{SI \times 100}{P \times T}}}

Time :- {\boxed{\tt\dfrac{SI \times 100}{P \times R}}}

Similar questions