Math, asked by sukritisharma260, 1 month ago

Find the amount when Rs. 10,000 is invested for two and a half years at 10% interest compounded yearly.​

Answers

Answered by SachinGupta01
6

\bf \underline{ \underline{\maltese\:Given} }

 \sf \implies Principal = Rs.  \: 10,000

 \sf \implies Rate = 10 \:  \%

 \sf \implies Time = 2 \dfrac{1}{2}  \:  years

\bf \underline{ \underline{\maltese\:To  \: find } }

 \sf \implies Amount =  \: ?

\bf \underline{ \underline{\maltese\:Solution } }

{\sf When\;time\;is\;in\;fraction\;\left(i.e.\;a\dfrac{b}{c}\right),  {Then  : }}

\sf{Amount=Principal\left(1+\dfrac{Rate}{100}\right)^a\times\left(1+\dfrac{\dfrac{b}{c}\times Rate}{100}\right)}

 \sf \underline{Substituting \:  the  \: values},

\sf \implies{10000\left(1+\dfrac{10}{100}\right)^2\times\left(1+\dfrac{\dfrac{1}{2}\times10}{100}\right)}

\sf \implies{10000\left(1+\dfrac{1}{10}\right)^2\times\left(1+\dfrac{5}{100}\right)}

\sf \implies{10000\left(\dfrac{10 + 1}{10}\right)^2\times\left(1+\dfrac{1}{20}\right)}

\sf \implies{10000\left(\dfrac{11}{10}\right)^2\times\left(1+\dfrac{1}{20}\right)}

\sf \implies{10000\left(\dfrac{11}{10}\right)^2\times\left(\dfrac{20 + 1}{20}\right)}

\sf \implies{10000 \times  \dfrac{121}{100} \times\dfrac{21}{20}}

\sf \implies{100\times  \dfrac{121}{1} \times\dfrac{21}{20}}

\sf \implies  \cancel{\dfrac{100\times 121 \times 21}{20} }

\sf \implies 12705

 \underline{ \boxed{ \red{ \bf Hence, amount \:  will \:  be \:  Rs.  \: 12705}}}

Answered by AllenGPhilip
3

Answer:

Amt = 12,690.59

Step-by-step explanation:

Principle = 10,000

Rate of interest = 10%

Time = 2 yrs 6 months

Amt = p( 1 + r/100)ⁿ

Amt = 10,000( 1 + 0.10)⁵/₂

Amt = 10,000(1.10)⁵/₂

Amt = 10,000 * 1.269059

Amt = 12,690.59

Similar questions