Math, asked by leishangthoiba2, 9 months ago

find the amount which Ram will get on ₹4096, if he gave it for 18months at 12 1\2%per annum , interest being compounded half yearly.​

Answers

Answered by saieccharan
0

Answer:

idk

Step-by-step explanation:

Answered by TheProphet
2

Solution :

\underline{\bf{Given\::}}}

  • Principal, (P) = Rs.4096
  • Rate, (R) = 12 1/2% [ rate = 25/2%]
  • Time, (n) = 18 months. [time = 18/12 = 3/2 years]

\underline{\bf{To\:find\::}}}

The amount of the compound Interest.

\underline{\bf{Explanation\::}}}

\bigstarUsing formula of the compounded half - yearly :

\boxed{\bf{Amount=Principal\bigg(1+\frac{R}{2\times 100}\bigg)^{2n} }}}

A/q

\longrightarrow\sf{A=4096\bigg(1+\dfrac{\dfrac{25}{2} }{2\times 100} \bigg)^{\cancel{2}\times \dfrac{3}{\cancel{2}} } }\\\\\\\longrightarrow\sf{A=4096\bigg(1+\dfrac{\cancel{25}}{4\times \cancel{100}} \bigg)^{3} }\\\\\\\longrightarrow\sf{A=4096\bigg(1+\dfrac{1}{4\times 4}\bigg)^{3} }\\\\\\\longrightarrow\sf{A=4096\bigg(1+\dfrac{1}{16} \bigg)^{3} }\\\\\\\longrightarrow\sf{A=4096\bigg(\dfrac{16+1}{16} \bigg)^{3} }\\\\\\\longrightarrow\sf{A=4096\bigg(\dfrac{17}{16} \bigg)^{3} }\\\\\\

\longrightarrow\sf{A=\cancel{4096}\times \dfrac{17}{\cancel{16}} \times \dfrac{17}{\cancel{16}} \times \dfrac{17}{\cancel{16}} }\\\\\\\longrightarrow\sf{A=Rs.(1\times 17\times 17\times17)}\\\\\longrightarrow\bf{A=Rs.4913}

Thus;

The amount of the compound half - yearly will be Rs.4913 .

Similar questions