Math, asked by aryanpatidar2008a, 3 months ago

Find the amount which Ram will get on Rs. 4096, if he gave it for 18 months at 12 ½% per annum compound half yealy​

Answers

Answered by Anonymous
26

Given:

  • Ram deposits Rs.4096, if he gave it for 18 months at 12 ½% per annum compound half yealy

To Find:

  • The amount he gets back on the money he gave

Solution:

when compounded half yearly,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \: { \dag \bigg[ \bf \: A = P \bigg(1 +  \frac{r}{200}  \bigg) {}^{2n}  \bigg]}

Where,

  • A = Amount
  • P = Principal
  • R = Rate of interest ( P.A )
  • N = Time ( yearly)

Here,

  • Principal = Rs.4096
  • Rate of interest = 12 ½ %
  • Time = 1½years( 18 months)

{ \bf{ \underline{ \bigstar \:Substituting \: the \: values :  }}}

 \\ { { : \implies}\bf \: A = P  \bigg[1 +  \frac{r}{200}  \bigg] {}^{2n} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { { : \implies}\bf \: A = 4096  \bigg[1 +  \frac{12 \frac{1}{2} }{200}  \bigg] {}^{2 \times 1 \frac{1}{2} }  }  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { { : \implies}\bf \: A = 4096  \bigg[1 +  \frac{ \dfrac{25}{2} }{200}  \bigg] {}^{3}  } \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { { : \implies}\bf A = 4096 \bigg[1 +  \frac{1}{16}  \bigg] {}^{3}  } \:  \:  \:  \:  \:  \:  \: \:  \:    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \\ { { : \implies}\bf \: A = 4096 \bigg[ \frac{17}{16}  \bigg] {}^{3}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \\  \\  \\ { { : \implies}\bf \: A = 4096  \times  \frac{17}{16}  \times  \frac{17}{16}  \times  \frac{17}{16} } \:  \:  \:  \\  \\  \\ { { : \implies}\bf \: A = 17 \times 17 \times 17} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\ { : \implies} {\tt{ \underline{  \boxed{ \pmb{ \frak{A =R s.4913}}}}} \star} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • So, the amount is Rupees 4913 when compounded half yearly

Hence:

  • Ram receives rupees 4,913 respectively

More to know:

  • Formula to find amount when compounded annually

{{ : \implies} \bigg[ \bf \: A = P \bigg(1 +  \frac{r}{100}  \bigg) {}^{n}  \bigg]}

  • Formula to find amount when compounded quarterly

{ { : \implies}\bigg[ \bf \: A = P \bigg(1 +  \frac{r}{400}  \bigg) {}^{3n}  \bigg]}

  • Formula to amount interest at different rate of interests compounded

{ { : \implies}\bf \: A = P  \bigg[1 +  \frac{ r_{1}}{100}  \bigg] \bigg[1 +  \frac{ r_{2}}{100}  \bigg]\bigg[1 +  \frac{ r_{3}}{100}  \bigg]   }

Similar questions