Math, asked by Itzheartcracer, 2 months ago

Find the amplitude and modulus of the complex number -2 + 2√3i

Answers

Answered by maityh73
1

Answer: 4

Step-by-step explanation:

The amplitude and modulus of the complex number -2 + 2√3i is

= √( (-2)^2 + (2√3)^2 )

= √(4 + 12)

= √16

= 4

Answered by Ganesh094
13

Answer:

The given complex number is

 - 2 +  \sqrt{3i}

The modulus of

 - 2 +  \sqrt{3i}  =  \sqrt{( - 2) ^{2} }  + 2( \sqrt{3} ) ^{2}  \\  =  \sqrt{4 + 12}  \\  =  \sqrt{16}  \\  = 4

Therefore, the modulus of

 - 2 +  \sqrt{3i  }  = 4

clearly , in the the z-plane the point

z =  - 2 +  \sqrt{3i}  =  (- 2 ,2 \sqrt{3} )

lies in the second quadrant Hence, if ampz=θ then ,

 \tan( θ)  =  \frac{(2 \sqrt{3} )}{ - 2}   =  -  \sqrt{3}  \: where \:  \frac{\pi}{2}  <θ  \leqslant \pi

Therefore,

 \tan( θ )  =  -  \sqrt{3}  =  \tan(\pi -  \frac{\pi}{3} ) =  \tan( \frac{2\pi}{3} )

Therefore,

 θ =  \frac{2\pi}{3}

•°• the required amplitude of

 - 2 + 2 \sqrt{3i}   \:  \:  \:  \: \: is \:  \:  \:  \:  \:  \frac{2\pi}{3}

Similar questions