Math, asked by zzzainn4, 1 month ago

find the amt and the ci on 64000 for1 and a half years at 15 percent per annum componded half yearly

Answers

Answered by Ladylaurel
26

Answer :-

  • The amount is Rs. 79507.
  • The compound interest is Rs. 15507.

Step-by-step Explanation

To Find :-

  • The amount
  • The compound interest.

Given that,

Principal = Rs. 64,000

Time = 1½ years.

Rate = 15% per annum.

Solution :-

As per given question. it's given, "Compounded half yearly". So,

  •  \boxed{\sf{Amount} = P {\bigg(1 + \dfrac{R}{200} \bigg)}^{2n}}

Where,

➝ P = Principal

➝ R = Rate

➝ n = Time.

 \:

\sf{ \longrightarrow \: A = P {\bigg(1 + \dfrac{R}{200} \bigg)}^{2n}}

\sf{ \longrightarrow \: 64000 {\bigg(1 + \dfrac{15}{200} \bigg)}^{2 \times 1\frac{1}{2}}}

\sf{ \longrightarrow \: 64000 {\bigg(1 + \dfrac{15}{200} \bigg)}^{2 \times \frac{3}{2}}}

\sf{ \longrightarrow \: 64000 {\bigg(1 + \dfrac{15}{200} \bigg)}^{ \not{2} \times \frac{3}{ \not{2}}}}

\sf{ \longrightarrow \: 64000 {\bigg(1 + \dfrac{15}{200} \bigg)}^{3}}

\sf{ \longrightarrow \: 64000 {\bigg(1 + \dfrac{3}{40} \bigg)}^{3}}

\sf{ \longrightarrow \: 64000 {\bigg( \dfrac{43}{40} \bigg)}^{3}}

\sf{ \longrightarrow \: 64000 \bigg( \dfrac{79507}{64000} \bigg)}

\sf{ \longrightarrow \: 64000 \times \dfrac{79507}{64000}}

\sf{ \longrightarrow \: \cancel{64000} \times \dfrac{79507}{ \cancel{64000}}}

\bf{ \longrightarrow \: Amount = Rs. \: 79507} \\

ㅤㅤㅤㅤㅤ∴ The amount is Rs. 79507 .

 \\

Now, Compound Interest :-

We know,

  •  \boxed{\sf{Compound \: Interest = Amount - Principal}}

 \:

\sf{ \longrightarrow \: Compound \: Interest = Amount - Principal}

\sf{ \longrightarrow \: Rs. \: 79507 - Rs. \: 64000}

\bf{ \longrightarrow \: Rs. \: 15507}

Hence,

The compound interest is Rs. 15,507 .

Answered by Anonymous
35

Answer:

{\large{\underline{\underline{\bf{\green{Given : -}}}}}}

  • Principle = Rs.64000
  • Time = 1½ years
  • Rate = 15% per annum componded half yearly.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{To \: Find : -}}}}}}

  • Amount
  • Compound Interest

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{ Using \: Formulae: -}}}}}}

  • A = P(1 + R/100)ᵀ
  • C.I = A - P

\red\bigstar Where

  • A = Amount
  • P = Principle
  • R = Rate
  • T = Time
  • C.I = Compound Interest

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Solution : -}}}}}}

\red\bigstar Here, the interest is compounded half yearly and time period is 1½, then :-

{\dashrightarrow{\sf{Time =  1\dfrac{1}{2}}}}

{\dashrightarrow{\sf{Time = \dfrac{(1 \times 2) + 1}{2}}}}

{\dashrightarrow{\sf{Time = \dfrac{ 2 + 1}{2}}}}

{\dashrightarrow{\sf{Time = \dfrac{3}{2}}}}

{\dashrightarrow{\sf{Time =3 \: Half  \: Years}}}

\bigstar{\underline{\boxed{\bf{\blue{Time =3 \: Half  \: Years}}}}}

The time is 3 half years.

\begin{gathered}\end{gathered}

\red\bigstar Let us find out the Amount by Substituting the values in the formula :-

{\dashrightarrow{\sf{Amount =  P\bigg(1 + \dfrac{R}{100} \bigg)^{T}}}}

  • Substituting the values

{\dashrightarrow{\sf{Amount =  64000 \bigg(1 + \dfrac{15}{2 \times 100} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg(1 + \dfrac{15}{200} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \dfrac{(1 \times 200) + 15}{200} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \dfrac{200+ 15}{200} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \dfrac{215}{200} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \cancel{\dfrac{215}{200}} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg({\dfrac{43}{40}} \bigg)^{3}}}}

{\dashrightarrow{\sf{Amount =  64000\bigg({\dfrac{43}{40}} \times \dfrac{43}{40} \times \dfrac{43}{40} \bigg)}}}

{\dashrightarrow{\sf{Amount =  64000\bigg( \dfrac{79507}{64000} \bigg)}}}

{\dashrightarrow{\sf{Amount =  64000 \times \dfrac{79507}{64000}}}}

{\dashrightarrow{\sf{Amount =  \cancel{64000} \times \dfrac{79507}{\cancel{64000}}}}}

{\dashrightarrow{\sf{Amount =Rs.79507}}}

\bigstar{\underline{\boxed{\bf{\purple{Amount =Rs.79507}}}}}

The Amount is Rs.79507.

\begin{gathered}\end{gathered}

\red\bigstar Let us find out the compound interest by substituting the values in the formula :-

{\dashrightarrow{\sf{Compound \: Interest=Amount - Principal}}}

  • Substituting the values

{\dashrightarrow{\sf{Compound \: Interest=79507 - 64000}}}

{\dashrightarrow{\sf{Compound \: Interest=Rs.15507}}}

\bigstar{\underline{\boxed{\bf{\pink{Compound \: Interest=Rs.15507}}}}}

The compound interest is Rs.15507.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Learn \: More : -}}}}}}

\small\circ{\underline{\boxed{\sf{\red{ Simple \: Interest = \dfrac{P \times R \times T}{100}}}}}}

\small\circ{\underline{\boxed{\sf{\red{Amount={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\small\circ{\underline{\boxed{\sf{\red{Amount = Principle + Interest}}}}}

\small\circ{\underline{\boxed{\sf{\red{ Principle=Amount - Interest }}}}}

\small\circ{\underline{\boxed{\sf{\red{Principle = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}}}}}}

\small\circ{\underline{\boxed{\sf{\red{Principle = \dfrac{Interest \times 100 }{Time \times Rate}}}}}}

\small\circ{\underline{\boxed{\sf{\red{Rate = \dfrac{Simple \: Interest \times 100}{Principle \times Time}}}}}}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Similar \:  Questions : -}}}}}}

  • ⟶https://brainly.in/question/46524701
  • ⟶https://brainly.in/question/46129502
  • ⟶ https://brainly.in/question/44478091
  • ⟶ https://brainly.in/question/43785289
  • ⟶ https://brainly.in/question/226059
  • ⟶ https://brainly.in/question/42946408

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions