find the analytic function w=u+iv given v=e-2xy sin(x2-y2)
Answers
Answered by
0
Please mark me as Brainlist and Follow.me
Solution:-
Let f = u + iv. Then,
u = x
2 − y
2 − 2y ⇒ ux = 2x = vy ⇒ v = 2xy + φ(x) ⇒
−vx = −2y − φ
0
(x) = uy = −2y − 2 ⇒ φ(x) = 2x + c ⇒
f = x
2 − y
2 − 2y + i(2xy + 2x + c)
where c is a real constant.
Let g = u + iv. We have:
v = 2xy + y ⇒ vy = 2x + 1 = ux ⇒ u = x
2 + x + φ(y) ⇒
uy = φ
0
(y) = −vx = −2y ⇒ φ(y) = −y
2 + C ⇒
g = x
2 − y
2 + x + c + i(2xy + y)
where as before c is a real constant.
┏─━─━─━∞◆∞━─━─━─┓
✭✮ӇЄƦЄ ƖƧ ƳƠƲƦ ƛƝƧƜЄƦ✮✭
┗─━─━─━∞◆∞━─━─━─┛
Answered by
0
Answer:
e^-iz^
Step-by-step explanation:
Similar questions