find the angle between 0° abd 360°, which satisfies the equation sin²theta=3/2
Answers
Answered by
2
Answer:
43° & 137°
Step-by-step explanation:
Sin x= Cos 47°
as we know that
Sinx° = cos (90°-x°)
so applying the same
Cos(90°-x°) = Cos 47°
=> 90°-x° = 47°
=> -x° = 47° - 90°
=> -x° = -43°
=> x = 43°
as we also know that
Sinx° = Sin(180° -x°)
putting value of x
Sinx° = Sin(180°-43°)
Sinx° = Sin137°
43° & 137°
Step-by-step explanation:
Sin x= Cos 47°
as we know that
Sinx° = cos (90°-x°)
so applying the same
Cos(90°-x°) = Cos 47°
=> 90°-x° = 47°
=> -x° = 47° - 90°
=> -x° = -43°
=> x = 43°
as we also know that
Sinx° = Sin(180° -x°)
putting value of x
Sinx° = Sin(180°-43°)
Sinx° = Sin137°
aravindjegan71:
super
Answered by
0
Answer:
43° & 137°
Step-by-step explanation:
Sin x= Cos 47°
as we know that
Sinx° = cos (90°-x°)
so applying the same
Cos(90°-x°) = Cos 47°
=> 90°-x° = 47°
=> -x° = 47° - 90°
=> -x° = -43°
=> x = 43°
as we also know that
Sinx° = Sin(180° -x°)
putting value of x
Sinx° = Sin(180°-43°)
Sinx° = Sin137°
\bf\:x = 137°x=137°
Similar questions