find the angle between(1,3)to the circle x²+y²-2x+4y-11=0
Answers
Answered by
0
Answer:
We have, S=x
2
+y
2
−2x+4y−11=0
And the given point is (1,3)
So S
1
=(1)
2
+(3)
2
−2(1)+4(3)−11=9
and T=x(1)+y(3)−(x+1)+2(y+3)−11=5y−6
So equation of pair of tangent is given by, SS
1
=T
2
⇒9(x
2
+y
2
−2x+4y−11)=(5y−6)
2
⇒9x
2
+9y
2
−18x+36y−99=25y
2
−60y+36
⇒9x
2
−16y
2
−18x+96y−135=0
Comparing with general second degree equation,
a=9,b=−16,h=0
Thus angle between the tangents =tan
−1
∣
∣
∣
∣
∣
∣
a+b
h
2
−ab
∣
∣
∣
∣
∣
∣
=tan
−1
7
12
Similar questions