find the angle between 2i-j+k and i-j+0k
Answers
Answer:
cos inverse=(-1/3) is the angle
Given :-
◉ Vectors,
- A = 2i - j + k
- B = i - j + 0k
To Find :-
◉ Angle between the vectors A and B.
Solution :-
First let us find the resultant vector by applying the cross product on A and B,
| i j k |
⇒ A × B = | 2 -1 1 |
| 1 -1 0 |
Opening the determinant,
⇒ A × B = (-1×0 - 1×-1)i - (2×0 - 1×1)j + (2×-1 - 2×-1)k
⇒ A × B = i + j + 0k
⇒ |A × B| = √(1² + 1² + 0²)
⇒ |A × B| = √2
Now, Let us find the magnitude of A and B,
⇒ |A| = √(2² + (-1)² + 1²)
⇒ |A| = √(4 + 2)
⇒ |A| = √6
Similarly, Magnitude of vector B,
⇒ |B| = √(1² + (-1)²)
⇒ |B| = √(1 + 1)
⇒ |B| = √2
We know,
⇒ A × B = |A| |B| sin θ
⇒ sin θ = |A × B| / |A| |B|
⇒ sin θ = √2 / √6 × √2
⇒ sin θ = 1/√6
⇒ θ = sin⁻¹ 1/√6
Hence, The angle between the two given vectors is sin⁻¹ 1/√6
Some Information :-
☛ Cross product of two vectors gives a vector.
While, Scalar product or dot product gives a scalar , generally a number.
- Scalar Product = |A| |B| cos θ
- Cross Product = |A| |B| sin θ