English, asked by shaseeb026, 7 months ago

find the angle between A=2i+2j-k and B=6i-3j+2k​

Answers

Answered by BʀᴀɪɴʟʏAʙCᴅ
8

\huge{\orange{\boxed{\fcolorbox{lime}{aqua}{\pink{ANSWER}}}}} \\

Let,

  • θ be the angle between the two given vectors .

A = 2i + 2j - k

B = 6i - 3j + 2k

We know that,

\bf{\vec{a}\:.\:\vec{b}\:=\:\mid{\vec{a}}\mid\:\mid{\vec{b}}\mid\:\cos{\theta}\:} \\

\bf{\vec{a}\:.\:\vec{b}\:} = 2 × 6 + 2 × (-3) + (-1) × 2

\bf{\vec{a}\:.\:\vec{b}\:} = 4

Now,

  • \bf{\mid{\vec{a}}\mid} = 3

  • \bf{\mid{\vec{b}}\mid} = 4

\bf\red{cos{\theta}\:=\:\dfrac{\vec{a}\:.\:\vec{b}}{\mid{\vec{a}}\mid\:\mid{\vec{b}}\mid}\:} \\

→ cosθ = 4/(3 × 7) = 4/21

\bf{\implies\:\theta\:=\:cos^{-1}\:\dfrac{4}{21}\:=\:79°\:} \\

Answered by Braɪnlyємρєяσя
14

\huge\red{\boxed{\blue{\mathcal{\overbrace{\underbrace{\fcolorbox{blue}{aqua}{\underline{\red{ANSWER}}}}}}}}}

A - 2i+2j-k

B - 6i-3j+2k

  |a| \\  = 3 \\  \\  \\ \\  |b|  = 4

 \cos =  4   \(3 \times 7) = 4 \21

 \cos( - 1)  \frac{4}{12}  = 79 \: hence \: proved

Similar questions