Physics, asked by syn83, 11 months ago

Find the angle between force (3i + 4j - 5k) and displacement (5i + 4j + 3k).

Answers

Answered by Anonymous
172

Solution:

Given:

\sf{\implies Force,\;\overrightarrow{f} = 3\widehat{i}+4\widehat{j}-5\widehat{k}}

\sf{\implies Displacement,\; \overrightarrow{d} = 5\widehat{i}+4\widehat{j}-3\widehat{k}}

To find:

=> Angle between force and displacement (Ф)

So,

\sf{Let\;\overrightarrow{A} = 3\widehat{i}+4\widehat{j}-5\widehat{k}}

\sf{\overrightarrow{B} = 5\widehat{i}+4\widehat{j}-3\widehat{k}}

Then,

\sf{\overrightarrow{A}.\overrightarrow{B}=(3\times 5) + (4 \times 4) + (-5 \times 3)}

\sf{\implies 15+16-15}

\sf{\implies 16}

And,

\sf{A = \sqrt{3^{2}+4^{2}+5^{2}}}

\sf{= \sqrt{9+16+25}}

\sf{A = 5\sqrt{2}}

And,

\sf{B = \sqrt{5^{2}+4^{2}+3^{2}}}

\sf{= \sqrt{25+16+9}}

\sf{B = 5\sqrt{2}}

Then,

\sf{\overrightarrow{A}.\overrightarrow{B}= AB \cos \theta}

We know,

A & B = 5√2,

\sf{\overrightarrow{A}.\overrightarrow{B } = 16}

So,

\sf{\overrightarrow{A}.\overrightarrow{B}= AB \cos \theta}

\sf{16=5\sqrt{2} \times 5\sqrt{2}\cos \theta}

\sf{16 = 50 \cos \theta}

\sf{\cos \theta = \dfrac{16}{50}}

So,

{\boxed{\boxed{\sf{\implies \theta = \cos^{-1}\bigg[\dfrac{8}{25}\bigg]}}}}

Answered by Anonymous
36

Answer:-

 \red{  \boxed{\boxed{ \green{ \bf{ \theta =  {cos}^{ - 1}  \bigg( \frac{8}{25}  \bigg)}}}}}

Explanation:-

To find:-

Angle between force and displacement.

Solution:-

Given:-

f =( 3i + 4j - 5k )N

d= ( 5i + 4j + 3k) m

we know that ,

Angle between two vector is →

 \bf{cos \:  \theta =  \frac{  \vec{f}. \vec{d}}{fd} }

 \bf{ \vec{f}. \vec{d} = (3i + 4j - 5k).(5i + 4j +3k)} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:    = 15 + 16 - 15 = 16 \\  \\  \\  \bf{fd =  \big( \sqrt{ {3}^{2} +  {4}^{2}  +  {5}^{2}  }  \big) \big( \sqrt{ {5}^{2}  +  {4}^{2} +  {3}^{2}  }  \big) }\\  \\  \:  \:  \:  \:  \:   \:  =  \sqrt{50}.  \sqrt{50}  = 50 \\  \\

Hence,

 \bf{cos  \: \theta =  \frac{16}{50} } \\  \\ \bf{ cos  \: \theta \:  =  \frac{8}{25} } \\  \\   \boxed{  \red{\theta =  {cos}^{ - 1}  \bigg( \frac{8}{25}  \bigg)}}

Similar questions