Math, asked by Nikki57, 1 year ago

Find the angle between lines y - √3x - 5 = 0 and √3y - x + 6 = 0.

MATHS | CLASS 11 | CH. STRAIGHT LINES pg. 223 |


Ashishjii: let me do it
Ashishjii: i can do it nikki57
Nikki57: ^^ Proceed
Anonymous: plz unblock me nikki57
Nikki57: i blocked u? Well, sure, lemme do
Anonymous: yaa u block me
Anonymous: plz unblock me

Answers

Answered by neosingh
74
slope of line 1,m1 = √3
slope of line 2,m2= 1/√3

Angle b/w two lines is x°, then we know
tan x = (m1- m2)/(1+ m1*m2)
tan x = (√3 -1/√3)/(1+√3*1/√3)
tan x = (3-1)/2*√3
tan x= 1/√3
>> x = 30° Ans
Answered by siddhartharao77
116
Given :

y - \sqrt{3} x - 5 = 0 ---- (1)

y = \sqrt{3} x + 5

It is in the form of y1 = m1x1 + c.

m1 = \sqrt{3}




 \sqrt{3} y - x + 6 = 0  ------ (2)

 \sqrt{3} y = x - 6

y = \frac{1}{ \sqrt{3} } x - \frac{6}{ \sqrt{3} }

y = \frac{1}{ \sqrt{3} } x - 2 \sqrt{3}

It is in the form of y2 = m2x2 + c.

m2 = \frac{1}{ \sqrt{3} }


Now,

Note: Here I am writing ∅ as A because it is difficult for me to write ∅ always.

Let A be the angle between the lines.Then

tan A = \frac{m1 - m2}{1 + m1m2}

                 = \frac{ \sqrt{3} - \frac{1}{ \sqrt{3} } }{1 + \sqrt{3} * \frac{1}{ \sqrt{3} } }

                 = \frac{ \sqrt{3} - \frac{1}{ \sqrt{3} } }{1 + 1}

                 = \frac{2}{ \frac{ \sqrt{3} }{2} }

                  = \frac{2}{2 \sqrt{3} }

                  = \frac{1}{ \sqrt{3} }


Tan A = \frac{1}{ \sqrt{3} }

A = 30.  ------- Which is an Acute angle

Thus, the Obtuse angle between the lines = 180 - 30

                                                                       = 150.



Therefore the angle between the lines is 30 or 150.


Hope this helps!

siddhartharao77: :-)
neosingh: oops, i missed the obtuse part
siddhartharao77: no problem..correct it now
Ashishjii: hey Siddhartharao
Ashishjii: are you using pc to write answers
siddhartharao77: Hmm
Similar questions