Find the angle between straight line 2x+3y+3=0 and 3x-2y+4=0
Answers
Answered by
4
EXPLANATION.
Angle between the straight lines,
⇒ 2x + 3y + 3 = 0.
⇒ 3x - 2y + 4 = 0.
As we know that,
Slope of the line y = mx + c.
From equation (1), we get.
Slope of line : 2x + 3y + 3 = 0.
⇒ 2x + 3y + 3 = 0.
⇒ 3y = - 2x - 3.
⇒ y = -2x/3 - 3/3.
⇒ y = -2x/3 - 1.
Slope : M₁ = -2/3.
From equation (2), we get.
Slope of line : 3x - 2y + 4 = 0.
⇒ 3x - 2y + 4 = 0.
⇒ - 2y = - 3x - 4.
⇒ 2y = 3x + 4.
⇒ y = 3x/2 + 4/2.
⇒ y = 3x/2 + 2.
Slope : M₂ = 3/2.
As we know that,
⇒ tan∅ = | m₁ - m₂/1 + m₁m₂ |.
Put the values of m in this equation, we get.
⇒ tan∅ = | - 2/3 - 3/2/1 + (-2/3)(3/2) |.
⇒ tan∅ = | -4 - 9/6/1 - 1 |.
⇒ tan∅ = | -13/9/0 |.
⇒ tan∅ = 90°.
⇒ ∅ = π/2.
Similar questions
Computer Science,
2 months ago
Chemistry,
2 months ago
Math,
4 months ago
Math,
4 months ago
Science,
11 months ago