Math, asked by beheraBhargavi, 3 months ago

find the angle Between the curves y^2=4x, x^2+y^2=5 in tangents chapter​

Answers

Answered by knjroopa
1

Step-by-step explanation:

Given Find the angle Between the curves y^2=4x, x^2+y^2=5 in tangents chapter

  • We have y^2 = 4x  ----------1
  • and x^2 + y^2 = 5 ----------- 2
  • Now we need to find the intersection point of two curves.
  • Substituting y^2 = 4x in equation 2 we get
  •     x^2 + 4x = 5
  •     x^2 + 4x – 5 = 0
  •    x^2 + 5x – x – 5 = 0
  •    x (x + 5) – 1(x + 5) = 0
  •      (x + 5) (x – 1) = 0
  •    So x = - 5, x = 1
  •   Now for x = 1,  y^2 = 4x
  •                               y^2 = 4
  •                                 y = + - 2
  • Now slope of tangent of curve y^2 = 4x will be
  •                               m1 = dy / dx
  •                                 So dy / dx = 4/2y
  •                                                  = 4/4
  •                                                  = 1
  • Now slope of tangent of cure x^2 + y^2 = 5
  •                                 m2 = dy / dx
  •                          So dy/dx = d/dx (x^2 + y^2) = 0
  •                                           = 2x + 2y dy/dx = 0
  •                                                      2y dy/dx = - 2x
  •                                                           dy/dx = - 2x / 2y
  •                                                       dy/dx = - x / y
  •                                                                  = - 1 / 2
  •       So tan theta = m1 – m2 / 1 + m1m2
  •                         = 1 – (- ½) / 1 + (1) (- ½)
  •                        = 1 + ½ / 1 – ½  
  •        So tan theta = 3
  •           Or theta = tan^-1 3

Reference link will be

https://brainly.in/question/37682834

Similar questions