Math, asked by vaishnavikale327, 4 months ago

find the angle between the line 3x -4y= 420 & 4x + 3y = 420​

Answers

Answered by ravi2303kumar
5

Answer:

θ = 90°

Step-by-step explanation:

property used:

If θ is the angle between two intersecting lines defined by y₁= m₁x₁+c₁ and y₂= m₂x₂+c₂, then, the angle θ is given by

tanθ=±(m₂-m₁) / (1+m₁m₂)

line1 => 3x-4y=420  => 4y = 3x-420  =>  y = \frac{3x}{4} - \frac{420}{4} => y = \frac{3x}{4} - 105

line2 => 4x + 3y = 420​ => 3y = -4x + 420 => y = \frac{-4x}{3} - \frac{420}{3} => y = \frac{-4x}{3} - 140

here,

m₁ = \frac{3}{4} , m₂ = \frac{-4}{3}

=> tanθ = \frac{| \frac{3}{4}  - \frac{-4}{3}  | }{1+(\frac{3}{4})*(\frac{-4}{3})}

             = \frac{| \frac{3}{4}  + \frac{4}{3}  | }{1-(\frac{3*4}{4*3})} = \frac{| \frac{3}{4}  + \frac{4}{3}  | }{1-1} = \frac{| \frac{3}{4}  + \frac{4}{3}  | }{0}

             = ∞ (inifinity)

here, tanθ = ∞

but we know, tan 90° = ∞

=> θ = 90°

Similar questions