Math, asked by Anonymous, 3 months ago

Find the angle between the line
(x + 1)/2 = y/3 = (z - 3 )/6 and the plane 10x + 2y - 11z = 3 ​

Answers

Answered by amansharma264
36

EXPLANATION.

 \sf \:  \implies \: angle \: between \: the \: line \:  =  \dfrac{x + 1}{2}  =  \dfrac{y}{3}  =  \dfrac{z - 3}{6}

And the plane = 10x + 2y - 11z = 3.

As we know that,

 \sf \: angle \: between \: the \: line \:   =  \dfrac{x -  x_{1} }{a}  =  \dfrac{y -  y_{1} }{b}  =  \dfrac{z -  z_{1} }{c}

normal to the plane = Ax + By + Cz = 0.

As we know that,

Formula of angle between line and plane.

  \sf \: \sin( \phi)  =   \bigg| \dfrac{Aa + Bb \:  + Cc}{ \sqrt{ {a}^{2}  +  {b}^{2}  +  {c}^{2} }    \:  \sqrt{ {A}^{2}  +  {B}^{2}  +  {C}^{2} } } \bigg|

= a = 2 , b = 3 , c = 6.

= A = 10 , B = C = -11.

Put the value in equation, we get.

 \sf \:  \sin( \phi)  =   \bigg| \dfrac{(10 \times 2) + (2 \times 3)  + ( - 11 \times 6)}{ \sqrt{ {2}^{2} +  {3}^{2}  +  {6}^{2}  } \sqrt{10 {}^{2} +  {2}^{2}  + ( - 11) {}^{2}  }  }  \bigg|

 \sf \:  \sin( \phi)  =   \bigg| \dfrac{20 +  6 - 66}{ \sqrt{4 + 9 + 36} \sqrt{100 + 4 + 121}  }  \bigg|

 \sf \:  \sin( \phi)  =   \bigg| \dfrac{ - 40}{7 \times 15}  \bigg|

 \sf \:  \sin( \phi)  =   \bigg| \dfrac{ - 8}{21}  \bigg|

  \sf \:  \sin( \phi)  =  \dfrac{8}{21}

 \sf \:  \phi \:  =  \sin {}^{ - 1} ( \dfrac{8}{21} )

Answered by mathdude500
5

To find the angle between line and plane

\large\underline{\bold{❥︎Step :- 1 }}

Equation of line is

\sf \:  ⟼ \: \dfrac{x + 1}{2}  = \dfrac{y}{3}  = \dfrac{z - 3}{6}  \: \sf \:  ⟼ \: (1)

So, it implies line (1) passing through the point (-1, 0, 3) and having direction ratios (2, 3, 6).

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

☆ Equation of plane is

\sf \:  ⟼ \: 10x + 2y - 11z = 3 \: \sf \:  ⟼ \: (2)

☆ So, it implies, direction ratios of the plane is (10, 2, - 11).

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 3 }}

\begin{gathered}\begin{gathered}\bf So,  \: we  \: get  \: \begin{cases} &\sf{direction \: ratios \: of \: line} \\ &\sf{a_1 = 2}\\ &\sf{b_1 = 3}\\ &\sf{c_1 = 6}\\ &\sf{direction \: of \: plane}\\ &\sf{a_2 = 10}\\ &\sf{b_2 = 2}\\ &\sf{c_2 =  - 11} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 4 }}

☆ Let angle between line and plane be α.

Then angle between line and plane is given by

\bf \:  ⟼ sin \alpha  = \dfrac{ |a_1a_2 + b_1b_2 + c_1c_2| }{ \sqrt{ {a_1}^{2}  +  {b_1}^{2}  +  {c_1}^{2} } \sqrt{ {a_2}^{2}  +  {b_2}^{2} +  {c_2}^{2}  }  }

☆ On substituting the values, we get

\sf \:  ⟼sin \alpha  = \dfrac{ |2 \times 10 + 3 \times 2 - 6 \times 11| }{ \sqrt{4 + 9 + 36} \sqrt{100 + 4 + 121}  }

\sf \:  ⟼sin \alpha  = \dfrac{ |20 + 6 - 66| }{ \sqrt{49} \times  \sqrt{225}  }

\sf \:  ⟼sin \alpha  = \dfrac{ | - 40| }{7 \times 15}

\sf \:  ⟼sin \alpha  \:  = \dfrac{40}{105}

\sf \:  ⟼sin \alpha  \:  = \dfrac{8}{21}

\bf\implies \: \alpha  =  {sin}^{ - 1} \bigg( \dfrac{8}{21} \bigg)

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions