Math, asked by gauthamukumar73, 5 months ago

Find the angle between the lines √3x-y+5=0 and x-√3y-6=0.​

Answers

Answered by PharohX
5

GIVEN :-

  • Equation of lines are -
  •  \sf \:  \sqrt{3} x - y + 5 = 0 \:  \:  \:  \:  \:  \:  \:  \:  \: ....(i)
  •  \sf \: x -  \sqrt{3} y - 6 = 0 \:  \:  \:  \:  \:  \:  \: ....(ii)

SOLUTION :-

 \sf \: First \:  \: change \:  \: the \:  \: eq. \:  \: of \:  \: line \:  \: in \:  \: the \:  \: form

 \sf \: of \:  \: y =  \: mx + c

From equation (i)

 \sf \:  \sqrt{3} x - y + 5 = 0

 \sf \:  \implies \sqrt{3} x  + 5 = y

 \sf \:  \implies y = \sqrt{3} x  + 5

 \sf \: Here \:  \:  slope \:  \:  (m_{1} )

 \sf   slope \:  \:  (m_{1} ) =  \sqrt{3}

From equation (ii)

 \sf \: x -  \sqrt{3} y - 6 = 0

 \sf \: \implies x  - 6 = -  \sqrt{3} y

 \sf \: \implies  \frac{x - 6}{  - \sqrt{3} }  = y \\

 \sf \: \implies  y  =  - \frac{x }{ \sqrt{3} }  + \frac{6}{ \sqrt{3} }    \\

 \sf \: Here \:  \:  slope \:  \:  (m_{2} )

 \sf   slope \:  \:  (m_{2} ) =    - \frac{1}{ \sqrt{3} }  \\

 \sf \: Use \:  \:  the \:  \:  formula  \:  \: of \:  \:  slope -

 \sf \: slope \: \green{  \{\tan( \theta)  \} }=   \pink{ \bigg | \frac{ m_{1}  -  m_{2}}{1 +m_{1}m_{2} } \bigg | } \\

 \sf  \:   \tan( \theta)  =   \bigg | \frac{  \sqrt{3}   -   (\frac{ - 1}{ \sqrt{3} }) }{1  +  \sqrt{3}. (\frac{ - 1}{ \sqrt{3} } )  } \bigg |  \\

 \sf  \:   \tan( \theta)  =   \bigg | \frac{  \sqrt{3}   -   (\frac{ - 1}{ \sqrt{3} }) }{1   - 1  } \bigg |  \\

 \tan( \theta)  =  \infin

 \theta  = 90 \degree

Hence lines are perpendicular to each other.

Similar questions