Math, asked by JAISAL8879, 29 days ago

Find the angle between the lines x + 2y = 5 and 3x + y = 11

Answers

Answered by MysticSohamS
1

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

so \: here \\ given \: equations \: are \:  \\ x + 2y = 5 \:  \: and \:  \: 3x + y = 11 \\  \\ so \: comparing \: these \: equations \: with \:  \\ a1x + b1y = c1 \:  \: and \:  \: a2x + b2y = c2 \\ we \: get \\  \\ a1 = 1 \: , \: b1 = 2 \\ a2 = 3 \: , \: b2 = 1 \\  \\ so \: we \: know \: that \\ slope =  \frac{ - a}{b}  \\  \\ hence \: then \\  \\ m1 =  \frac{ - a1}{b1}  \\  \\ m1 =  \frac{ - 1}{2}  \\  \\ similarly \\  \\ m2 =  \frac{ - a2}{b2}  \\  \\  m2=  \frac{ -3 }{1}  =  - 3 \\  \\

so \: now \: we \: know \: that \\  tan \: θ =  | \:  \frac{m1 - m2}{1 + m1.m2}  \: |  \\  \\  =  | \frac{ \frac{ - 1}{2}  - ( - 3)}{1 +  \frac{ - 1}{2}  \times ( - 3)} |  \\  \\  =  | \frac{ \frac{ - 1}{2} + 3 }{1 +  \frac{3}{2} } |  \\  \\  =  | \:  \frac{ \frac{ - 1 + 6}{2} }{ \frac{2 + 3}{2} } \:  |  \\  \\  =  | \frac{ \frac{ \frac{5}{2} }{5} }{2} |  \\  \\  =  |1|  \\  \\  = 1 \\ we \: know \: that \\ tan \: θ = 45 \\  \\ hence  \: then \\ \: θ = 45

Similar questions