English, asked by chand5691, 5 months ago

find the angle between the lines y=-rooot3x+5,y=1/root3x-2/root 3 ​

Answers

Answered by mathdude500
48

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Given :-

Two equation of lines

1. \: y =  \sqrt{3}  + 5 \\ 2. \: y =  \frac{1}{ \sqrt{3} } x -  \frac{2}{ \sqrt{3} }

To find :-

Angle between two lines.

Formula used :-

Let θ be the angle between two lines, then

\boxed{ \large{ \mathfrak{tan θ=  | \frac{m_1 - m_2}{1 + m_1 m_2} | }}}

where

m_1 \:  = slope \: of \: ist \: line \\   m_2 \:  = slope \: of \: 2nd \: line

Solution:-

 \: y =  \sqrt{3}x  + 5 \\ \\slope \: of \: line \:  m_1  =  \sqrt{3}  \\  \\ now \:  \: y =  \frac{1}{ \sqrt{3} } x -  \frac{2}{ \sqrt{3} }  \\ slope \: of \: line \:  m_2 \:  =  \frac{1}{ \sqrt{3} }

Using formula

\boxed{ \large{ \mathfrak{tan θ=  | \frac{m_1 - m_2}{1 + m_1 m_2} | }}}

tanθ =  | \frac{ \sqrt{3}  -  \frac{1}{ \sqrt{3} } }{1 +  \sqrt{3}  \times  \frac{1}{ \sqrt{3} } } |  \\  =  | \frac{3 - 1}{2 \sqrt{3} } | =  \frac{2}{2 \sqrt{3} }  \\  =  | \frac{1}{ \sqrt{3} } |  \\  =  > θ = 30

So angle between lines is 30° or 150°.

\huge \fcolorbox{black}{cyan}{♛Hope it helps U♛}

Answered by muskanshi536
3

Explanation:

\huge\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Answer}}}}}}}} \\ \large\pink{\boxed{\blue{\boxed{ \purple{ \boxed{{\pink{Your~answer↓}}}}}}}}

Given :-

Two equation of lines

1. \: y =  \sqrt{3}  + 5 \\ 2. \: y =  \frac{1}{ \sqrt{3} } x -  \frac{2}{ \sqrt{3} }

To find :-

Angle between two lines.

Formula used :-

Let θ be the angle between two lines, then

\boxed{ \large{ \mathfrak{tan θ=  | \frac{m_1 - m_2}{1 + m_1 m_2} | }}}

where

m_1 \:  = slope \: of \: ist \: line \\   m_2 \:  = slope \: of \: 2nd \: line

Solution:-

 \: y =  \sqrt{3}x  + 5 \\ \\slope \: of \: line \:  m_1  =  \sqrt{3}  \\  \\ now \:  \: y =  \frac{1}{ \sqrt{3} } x -  \frac{2}{ \sqrt{3} }  \\ slope \: of \: line \:  m_2 \:  =  \frac{1}{ \sqrt{3} }

Using formula

\boxed{ \large{ \mathfrak{tan θ=  | \frac{m_1 - m_2}{1 + m_1 m_2} | }}}

tanθ =  | \frac{ \sqrt{3}  -  \frac{1}{ \sqrt{3} } }{1 +  \sqrt{3}  \times  \frac{1}{ \sqrt{3} } } |  \\  =  | \frac{3 - 1}{2 \sqrt{3} } | =  \frac{2}{2 \sqrt{3} }  \\  =  | \frac{1}{ \sqrt{3} } |  \\  =  > θ = 30

So angle between lines is 30° or 150°.

\huge \fcolorbox{black}{cyan}{♛Hope it helps U♛}

Similar questions