Math, asked by chandavedic, 21 hours ago

Find the angle between the minute hand and hour hand when time is 7.20 am.​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

We know,

  • Angle traced by minute hand in 60 minutes is 360°.

So,

  • Angle traced by minute hand in 1 minutes is 6°.

So,

  • Angle traced by minute hand in 20 minutes is 120°.

Now,

  • Angle traced by hour hand in 12 hours is 360°.

So,

  • Angle traced by hour hand in 1 hour is 30°.

Now,

7 hour 20 minutes =  \rm \: 7\dfrac{20}{60} = \rm \: 7\dfrac{1}{3} = \rm \: \dfrac{22}{3} \: hours

So,

  • Angle traced by hour hand in  \rm \: \dfrac{22}{3} hours is  \rm \: \dfrac{22}{3}×30 = 220°

So,

Angle between the minute hand and hour hand when time is 7.20 am = 220° - 120° = 100°.

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(x  -  y) = sinx \: cosy \:  -  \: siny \: cosx}\\ \\ \bigstar \: \bf{sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx}\\ \\ \bigstar \: \bf{cos(x + y) = cosx \: cosy \: -  \: sinx \: siny}\\ \\ \bigstar \: \bf{cos(x - y) = cosx \: cosy \:+\: siny \: sinx}\\ \\ \bigstar \: \bf{tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany} }\\ \\ \bigstar \: \bf{tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany} }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by cutegirl3786
0

Answer:

Angle=30°⋅3+10°=100°

Step-by-step explanation:

Hear is a short Answer buddy....

Similar questions