Math, asked by ⲎσⲣⲉⲚⲉⲭⳙⲊ, 4 months ago


Find the angle between the pair of lines given below.

(x + 3)/3 = (y -1)/5 = (z + 3)/4

(x + 1)/1 = (y – 4)/1 = (z – 5)/2

✰ need answer with explanation
✰ don't spam
✰ Answer with quality 

​​

Answers

Answered by Anonymous
88

Solution

 \bf \: Given

 \tt \to \:  \dfrac{(x + 3)}{3}  =  \dfrac{(y - 1)}{5}  =  \dfrac{(z + 3)}{4}

 \tt \to \:  \dfrac{(x + 1)}{1}  =  \dfrac{(y - 4)}{1}  =  \dfrac{(z - 5)}{2}

 \bf \: Formula

 \tt \to \: cos \theta \:   = \bigg| \dfrac{a_{1} a_2 + b_1b_2 + c_1c_2}{ \sqrt{a_1 {}^{2}  + b_1 {}^{2}  + c_1 {}^{2}   }  \sqrt{a_2 {}^{2}  + b_2 {}^{2}  + c_2 {}^{2}}}  \bigg|

 \bf \: Now \: we \: get \: from \: above \: equation

 \tt \to \: a_1 = 3 ,\: b_1 = 5, \: and \: c_1 = 4 \\  \tt \to \: a_2 = 1 ,\: b_2 = 1 ,\: and \: c_2 = 2

 \bf \: Now \: put \: the \: value \: on \: formula

 \tt \to \: cos \theta = \bigg| \dfrac{3 \times 1 + 5 \times 1 + 4 \times 2}{ \sqrt{(3) {}^{2} + (5) {}^{2}  + (4) {}^{2}  }  \sqrt{(1) {}^{2} + (1) {}^{2} + (2) {}^{2}   } }  \bigg|

 \tt \to \: cos \theta =  \bigg |\dfrac{3 + 5 + 8}{ \sqrt{9 + 25 + 16} \sqrt{1 + 1 + 4}  }  \bigg |

 \tt \to \: cos \theta \:  =   \bigg| \dfrac{16}{ \sqrt{50} \sqrt{6}  }  \bigg |

 \tt \to \: cos \theta =   \bigg|  \dfrac{16}{ \sqrt{50 \times 6} } \bigg|

 \tt \to \: cos \theta =   \bigg|  \dfrac{16}{ \sqrt{300} } \bigg|

 \tt \to \: cos \theta =     \dfrac{16}{ 10\sqrt{3} }

 \tt \to \: cos \theta =     \dfrac{8}{ 5\sqrt{3} }

 \bf \: Answer

 \tt \to \: \theta =    cos {}^{ - 1}    \bigg(\dfrac{8}{ 5\sqrt{3} }  \bigg)

Answered by ItzIshan
60

Question :-

Find the angle between the pair of lines given below -

 \displaystyle \sf \:  \frac{(x + 3) }{3}  =  \frac{(y - 1)}{5}  =  \frac{(z + 3)}{4}  \\  \\  \sf \:  \frac{(x + 1)}{1}  =  \frac{(y - 4)}{1}  =  \frac{(z - 5)}{2}

Solution :-

Comparing both pair of lines with

 \displaystyle \sf  \frac{( {x -  x_{1}) } }{a}  =  \frac{(y - y_{1})}{b}  =  \frac{(z - z_{1})}{c}

 \star \sf \: a_{1} = 3 \:  \: \:  b_{1} = 5 \:  \:  \: c_{1} = 4 \\  \\  \star \sf \:a_{2}  = 1 \:  \:  \: b_{2} = 1 \:  \:  \:c_{2} = 2

Now we have the formula to find the angle -

 \displaystyle  \boxed{\star \:  \sf \cos( \theta)  =  | \frac{ a_{1}^{2}  a_{2}^{2} \:  + \:  b_{1}^{2}  b_{2}^{2}   \: + \:  c_{1}^{2}  c_{2}^{2}  }{ \sqrt{a_{1}^{2}   \: +  \: b_{1}^{2}  \:  +  \: c_{1}^{2}  \: } \times  \sqrt{a_{2}^{2} \:  +  \:  b_{2}^{2} \:  +  \: c_{2}^{2}}  } | }

So,

 \mapsto \sf \:  \cos( \theta)  =   \bigg| \frac{ {(3)} \times  {(1)}+  {(5)}\times ( {1)}  + ( {4)}  \times ( {2)}}{ \sqrt{( {3)}^{2} + ( {5)}^{2} + ( {4)}^{2}   }  \times \sqrt{ {(1)}^{2}  + ( {1)}^{2} + ( {2)}^{2}  }  } \bigg|  \\  \\ \mapsto \sf \:  \cos( \theta)  =   \bigg|  \frac{3 \times 1 + 5 \times 1 + 4 \times 2}{ \sqrt{9+ 25 + 16} \times  \sqrt{1  + 1 + 4}  }  \bigg| \\  \\ \mapsto \sf \:  \cos( \theta)  =   \bigg|  \frac{3+ 5 + 8}{ \sqrt{50} \times  \sqrt{6}  }  \bigg| \\  \\ \mapsto \sf \:  \cos( \theta)  =   \bigg|  \frac{16}{ \sqrt{300} }  \bigg| \\  \\ \mapsto \sf \:  \cos( \theta)  =   \frac{16}{10 \sqrt{3} }  \\  \\  \sf \theta =  {cos}^{ - 1}  \frac{16}{10 \sqrt{3} }

Similar questions