Math, asked by anujssmishra9298, 17 days ago

Find the angle between the radius vector and the tangent line of the curve r=a(1+cos theta)

Answers

Answered by lokesh3321
8

Answer:

We have tan ϕ = r dθ/dr = r / dr/dθ

Step-by-step explanation:

r = a (1 - cos θ) .

So dr/dθ = a sin θ .

Hence, tan ϕ = a (1 - cos θ) / (a sin θ)

= 2 sin^2 (θ/2) / (2 sin (θ/2) cos (θ/2) )

= tan (θ/2) .

So ϕ = θ/2 .

Answered by aishwaryahk97sl
7

Answer:

The angle between radius vector and tangent is  \frac{\pi }{2} +\frac{\theta}{2}

Step-by-step explanation:

The given curve is r = a(1 + cos\theta)

differentiate r with respect to \theta, we get

\frac{dr}{d\theta} =-asin\theta

We know that

tanФ =  \frac{r}{\frac{dr}{d\theta} }

Here Ф is the angle between radius vector and tangent

tanФ = r ×\frac{d\theta}{dr}

        =\frac{r}{\frac{dr}{d\theta} }

        =\frac{a(1+cos\theta)}{-asin\theta}

       =-\frac{2cos^{2}\frac{\theta}{2}  }{2sin\frac{\theta}{2}cos\frac{\theta}{2}  }

       =-\frac{cos\frac{\theta}{2} }{sin\frac{\theta}{2} }

      =-cot(\frac{\theta}{2} )

       =tan(\frac{\pi }{2} +\frac{\theta}{2} )

Ф =\frac{\pi }{2} +\frac{\theta}{2}

Therefore the angle between radius vector and tangent is \frac{\pi }{2} +\frac{\theta}{2}

Similar questions