Math, asked by avaibhav1112, 5 months ago

Find the angle between the straight line 5x+2y+1 and 3x-4y+3

Answers

Answered by janvinegi2708
0

Answer:

8x-2y+4

Step-by-step explanation:

make me brainliest and follow me

Answered by Asterinn
4

If slope of two line are m₁ and m₂ , then angle between them :-

 \boxed{ \boxed{ \rm \large tan \theta = \bigg | \frac{m_1 -  m_2 }{1 +m_1  m_2 } \bigg | }} \\  \\  \\  \rm where \:  \bold{\theta} \: is \: \: acute \: angle \: between \: two \: lines.

Now we will find slope of line 5x+2y+1=0

➝ 5x+2y+1=0

➝ 2y = -5x -1

➝ y = (-5/2)x - (1/2)

We have transformed 5x+2y+1=0 in the form of y = mx+c.

Therefore, slope of line 5x+2y+1=0 :- -5/2

Now we will find slope of line 5x+2y+1=0

➝ 5x+2y+1=0

➝ 2y = -5x -1

➝ y = (-5/2)x - (1/2)

We have transformed 5x+2y+1=0 in the form of y = mx+c.

Therefore, slope of line 5x+2y+1=0 :- -5/2

Now we will find slope of line 3x-4y+3=0

➝ -4y= -3-3x

➝ 4y= 3+ 3x

➝ y= (3/4)+ (3/4)x

➝ y= (3/4)x + (3/4)

We have transformed 3x-4y+3=0 in the form of y = mx+c.

Therefore, slope of line 3x-4y+3=0 :- 3/4

\rm  \longrightarrow\large tan \theta = \bigg | \dfrac{m_1 -  m_2 }{1 +m_1  m_2 } \bigg | \\  \\  \\  \rm \: put \: \:  m_1 =  \dfrac{ - 5}{2}   \: and \: m_2 =  \dfrac{3}{4}  \\  \\  \\ \rm  \longrightarrow\large tan \theta = \bigg | \dfrac{ \frac{ - 5}{2} -   \frac{3}{4} }{1 +( \frac{ - 5}{2} \times\frac{3}{4})} \bigg | \\  \\  \\ \rm  \longrightarrow\large tan \theta = \bigg | \dfrac{ \frac{ - 13}{4}  }{( \frac{ - 7}{8})} \bigg |\\  \\  \\ \rm  \longrightarrow\large tan \theta = \bigg | \dfrac{   - 13 \times 8 }{ - 7 \times 4} \bigg |\\  \\  \\ \rm  \longrightarrow\large tan \theta = \bigg | \dfrac{   13 \times 2 }{  7 \times 1} \bigg |\\  \\  \\ \rm  \longrightarrow\large tan \theta = \dfrac{  26 }{ 7 }  \\  \\  \\ \rm  \longrightarrow\large \theta = {tan}^{ - 1}  \dfrac{  26 }{ 7 }

Similar questions