Physics, asked by Micey7994, 1 year ago

Find the angle between the vectors : vector a =3i - 4j and vector b = -2i+3k

Answers

Answered by Anonymous
5

 \:\:\:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \huge\mathcal{\bf{{\underline{\underline{\huge\mathcal{...Answer...}}}}}}

\underline{\large\mathcal\red{solution}}

a =3i - 4j and vector b = -2i+3k

now ...|a|=√[(3)²+(-4)²]=5

and.....|b|=√[(-2)²+(3)²]=√13

now the dot product of a and b is

a.b=-6-12=-18

the angle is

 \cos {}^{ - 1} ( \frac{ - 18 }{ 5 \sqrt{13} } )

=3.09°

\large\mathcal\red{hope\: this \: helps \:you......}

Answered by rishabh1894041
1

Explanation:

Given \: it \:  \\ a = 3i - 4j \:  \:  \:,  \:  \: b =  - 2i + 3k \\ let \:  \alpha  \: be \: an \: angle \: between \: a \: and \: b \\ cos \alpha  =  \frac{(3i - 4j).( - 2i + 3k)}{ |3i - 4j|  | - 2i + 3k| }  \\ cos \alpha  =  \frac{ - 6}{ 5  \sqrt{13} }  \\  \alpha  =  {cos}^{ - 1}  \frac{ - 6}{5 \sqrt{13} }   \\  \\  \\  \\  \\ hope \: it \: will \: help \: you...

Similar questions